Publications

The following list of peer reviewed publications are from projects that received samples or laboratory support from NSF-ICF (formerly NICL), or from research that used data produced by projects that received samples or laboratory support from NSF-ICF.
 

2023

  1. Brugger SO, Chellman NJ, McConnell C, McConnell JR (2023) High-latitude fire activity of recent decades derived from microscopic charcoal and black carbon in Greenland ice cores. The Holocene, 33(2), 238-244. https://doi.org/10.1177/09596836221131711
  2. Buizert C, Shackleton S, Severinghaus JP, Roberts WHG, Seltzer A, Bereiter B, Kawamura K, Baggenstos D, Orsi AJ, Oyabu I, Birner B, Morgan JD, Brook EJ, Etheridge DM, Thornton D, Bertler N, Pyne RL, Mulvaney R, Mosley-Thompson E, Neff PD, and Petrenko VV (2023) The new Kr-86 excess ice core proxy for synoptic activity: West Antarctic storminess possibly linked to Intertropical Convergence Zone (ITCZ) movement through the last deglaciation. Climate of the Past, 19, 579-606. https://doi.org/10.5194/cp-19-579-2023
  3. Burke A, Innes HM, Crick L, Anchukaitis KJ, Byrne MP, Hutchison W, McConnell JR, Moore KA, Rae JWB, Sigl M, and Wilson R (2023) High sensitivity of summer temperatures to stratospheric sulfur loading from volcanoes in the Northern Hemisphere. Proceedings of the National Academy of Sciences, 120(47), e2221810120. https://doi.org/10.1073/pnas.2221810120
  4. Chesler A, Winski D, Kreutz K, Koffman B, Osterberg E, Ferris D, Thundercloud Z, Mohan J, Cole-Dai J, Wells M, Handley M, Putnam A, Anderson K, and Harmon N (2023) Non-spherical microparticle shape in Antarctica during the last glacial period affects dust volume-related metrics. Climate of the Past, 19, 477-492. https://doi.org/10.5194/cp-19-477-2023
  5. Eckhardt S, Pisso I, Evangeliou N, Zwaaftink CG, Plach A, McConnell JR, Sigl M, Ruppel M, Zdanowicz C, Lim S, Chellman N, Opel T, Meyer H, Steffensen JP, Schwikowski M, Stohl A (2023) Revised historical Northern Hemisphere black carbon emissions based on inverse modeling of ice core records. Nature Communications, 14, 271. https://doi.org/10.1038/s41467-022-35660-0
  6. Epifanio JA, Brook EJ, Buizert C, Pettit EC, Edwards JS, Fegyveresi JM, Sowers TA, Severinghaus JP, and Kahle EC (2023) Millennial and orbital-scale variability in a 54 000-year record of total air content from the South Pole ice core. The Cryosphere, 17, 4837–4851. https://doi.org/10.5194/tc-17-4837-2023
  7. Fang L, Jenk TM, Winski D, Kreutz K, Brooks HL, Erwin E, Osterberg E, Campbell S, Wake C, and Schwikowski M (2023) Early Holocene ice on the Begguya plateau (Mt. Hunter, Alaska) revealed by ice core 14C age constraints. The Cryosphere, 17, 4007–4020. https://doi.org/10.5194/tc-17-4007-2023
  8. Guillet S, Corona C, Oppenheimer C, Lavigne F, Khodri M, Ludlow F, Sigl M, Toohey M, Atkins PS, Yang Z, Muranaka T, Horikawa N, and Stoffel M (2023) Lunar eclipses illuminate timing and climate impact of medieval volcanism. Nature 616, 90–95. https://doi.org/10.1038/s41586-023-05751-z
  9. Jones TR, Cuffey KM, Roberts WHG, Markle BR, Steig EJ, Max Stevens CM, Valdes PJ, Fudge TJ, Sigl M, Hughes AG, Morris V, Vaughn BH, Garland J, Vinther BM, Rozmiarek KS, Brashear CA, and White JWC (2023) Seasonal temperatures in West Antarctica during the Holocene. Nature 613, 292-297. https://doi.org/10.1038/s41586-022-05411-8
  10. Koffman BG, Goldstein SL, Winckler G, Kaplan MR, Bolge L, Biscaye P (2023) Abrupt changes in atmospheric circulation during the Medieval Climate Anomaly and Little Ice Age recorded by Sr-Nd isotopes in the Siple Dome ice core, Antarctica. Paleoceanography and Paleoclimatology, 38, e2022PA004543. https://doi.org/10.1029/2022PA004543
  11. Lin J, Abbott PM, Sigl M, Steffensen JP, Mulvaney R, Severi M, and Svensson A (2023) Bipolar ice-core records constrain possible dates and global radiative forcing following the ∼74 ka Toba eruption. Quaternary Science Reviews, 312, 1-10. https://doi.org/10.1016/j.quascirev.2023.108162
  12. Piva SB, Barker SJ, Iverson NA, Winton VHL, Bertler NAN, Sigl M, Wilson CJN, Dunbar NW, Kurbatov AV, Carter L, Charlier BLA, Newnham RM (2023) Volcanic glass from the 1.8 ka Taupō eruption (New Zealand) detected in Antarctic ice at ~ 230 CE. Scientific Reports, 13, 16720. https://doi.org/10.1038/s41598-023-42602-3
  13. Plunkett G, Sigl M, McConnell JR, Pilcher JR, and Chellman NJ (2023) The significance of volcanic ash in Greenland ice cores during the Common Era. Quaternary Science Reviews, 301, 107936, 1-24. https://doi.org/10.1016/j.quascirev.2022.107936
  14. Riddell-Young B, Rosen J, Brook E, Buizert C, Martin K, Lee J, Edwards J, Muhl M, Schmitt J, Fischer H, and Blunier T (2023) Atmospheric methane variability through the Last Glacial Maximum and deglaciation mainly controlled by tropical sources. Nature Geoscience. https://doi.org/10.1038/s41561-023-01332-x
  15. Sinnl G, Adolphi F, Christl M, Welten KC, Woodruff T, Caffee M, Svensson A, Muscheler R, and Rasmussen SO (2023) Synchronizing ice-core and U ∕ Th timescales in the Last Glacial Maximum using Hulu Cave 14C and new 10Be measurements from Greenland and Antarctica. Climate of the Past, 19, 1153-1175. https://doi.org/10.5194/cp-19-1153-2023
  16. Thomas ER, Vladimirova DO, Tetzner DR, Emanuelsson BD, Chellman N, Dixon DA, Goosse H, Grieman MM, King ACF, Sigl M, Udy DG, Vance TR, Winski DA, Winton VHL, Bertler NAN, Hori A, Laluraj CM, McConnell JR, Motizuki Y, Takahashi K, Motoyama H, Nakai Y, Schwanck F, Simões JC, Lindau FGL, Severi M, Traversi R, Wauthy S, Xiao C, Yang J, Mosely-Thompson E, Khodzher TV, Golobokova LP, and Ekaykin AA (2023) Ice core chemistry database: an Antarctic compilation of sodium and sulfate records spanning the past 2000 years. Earth System Science Data, 15, 2517-2532. https://doi.org/10.5194/essd-15-2517-2023
  17. Zhai S, Swanson W, McConnell JR, Chellman N, Opel T, Sigl M, Meyer H, Wang X, Jaeglé L, Stutz J, Dibb JE, Fujita K, Alexander B (2023) Implications of snowpack reactive bromine production for Arctic ice core bromine preservation. Journal of Geophysical Research: Atmospheres, 128, e2023JD039257. https://doi.org/10.1029/2023JD039257

2022

  1. Banerjee A, Yeung LY, Murray LT, Tie X, Tierney JE, Legrande AN (2022) Clumped-isotope constraint on upper-tropospheric cooling during the Last Glacial Maximum. AGU Advances, 3, e2022AV000688, 1-15. https://doi.org/10.1029/2022AV000688
  2. Cao Y, Jiang Z, Alexander B, Cole-Dai J, Savarino J, Erbland J, and Geng L (2022) On the potential fingerprint of the Antarctic ozone hole in ice-core nitrate isotopes: a case study based on a South Pole ice core. Atmospheric Chemistry and Physics, 22, 13407-13422. https://doi.org/10.5194/acp-22-13407-2022
  3. Faïn X, Rhodes RH, Place P, Petrenko VV, Fourteau K, Chellman N, Crosier E, McConnell JR, Brook EJ, Blunier T, Legrand M, Chappellaz J (2022) Northern Hemisphere atmospheric history of carbon monoxide since preindustrial times reconstructed from multiple Greenland ice cores. Climate of the Past, 18, 631-647, https://doi.org/10.5194/cp-18-631-2022
  4. Hu J, Yan Y, Yeung LY, and Dee SG (2022) Sublimation origin of negative deuterium excess observed in snow and ice samples from McMurdo Dry Valleys and Allan Hills Blue Ice Areas, East Antarctica. Journal of Geophysical Research: Atmospheres, 127, e2021JD035950. https://doi.org/10.1029/2021JD035950
  5. Markle BR and Steig E J (2022) Improving temperature reconstructions from ice-core water-isotope records. Climate of the Past, 18, 1321-1368. https://doi.org/10.5194/cp-18-1321-2022
  6. Morgan JD, Buizert C, Fudge TJ, Kawamura K, Severinghaus JP, Trudinger CM (2022) Gas isotope thermometry in the South Pole and Dome Fuji ice cores provides evidence for seasonal rectification of ice core gas records. The Cryosphere, 16, 2947-2966. https://doi.org/10.5194/tc-16-2947-2022
  7. Shin J, Ahn J, Chowdhry Beeman J, Lee H-G, Seo JM, Brook EJ (2022) Millennial variations in atmospheric CO2 during the early Holocene (11.7–7.4 ka). Climate of the Past, 18, 2063-2075. https://cp.copernicus.org/articles/18/2063/2022/
  8. Sigl M, Toohey M, McConnell JR, Cole-Dai J, and Severi M (2022) Volcanic stratospheric sulfur injections and aerosol optical depth during the Holocene (past 11 500 years) from a bipolar ice-core array. Earth System Science Data, 14, 3167-3196. https://doi.org/10.5194/essd-14-3167-2022

2021

  1. Abbott PM, Plunkett G, Corona C, Chellman NJ, McConnell JR, Pilcher JR, Stoffel M, Sigl M (2021) Cryptotephra from the Icelandic Veiðivötn 1477 CE eruption in a Greenland ice core: confirming the dating of volcanic events in the 1450s CE and assessing the eruption's climatic impact. Climate of the Past, 17, 565-585. https://doi.org/10.5194/cp-17-565-2021
  2. Abbott PM, Niemeier U, Timmreck C, Riede F, McConnell JR, Severi M, Fischer H, Svensson A, Toohey M, Reinig F, SigL (2021) Volcanic climate forcing preceding the inception of the Younger Dryas: Implications for tracing the Laacher See eruption. Quaternary Science Reviews, 274. https://doi.org/10.1016/j.quascirev.2021.107260
  3. Bauska TK, Marcott SA, Brook EJ (2021) Abrupt changes in the global carbon cycle during the last glacial period. Nature Geoscience, 14, 91–96. https://doi.org/10.1038/s41561-020-00680-2
  4. Buizert C, Fudge TJ, Roberts WHG, Steig EJ, Sherriff-Tadano S, Ritz C, Lefebvre E, Edwards J, Kawamura K, Oyabu I, Motoyama H, Kahle EC, Jones TR, Abe-Ouchi A, Obase T, Martin C, Corr H, Severinghaus JP, Beaudette R, Epifanio JA, Brook EJ, Martin K, Chappellaz J, Aoki S, Nakazawa T, Sowers TA, Alley RB, Ahn J, Sigl M, Severi M, Dunbar NW, Svensson A, Fegyveresi JM, He C, Liu Z, Zhu J, Otto-Bliesner BL, Lipenkov VY, Kageyama M, Schwander J (2021) Antarctic surface temperature and elevation during the Last Glacial Maximum. Science, 372(6546), 1097-1101. https://doi.org/10.1126/science.abd2897
  5. Casto-Boggess LD, Golozar M, Butterworth AL, Mathies RA (2021) Optimization of Fluorescence Labeling of Trace Analytes: Application to Amino Acid Biosignature Detection with Pacific Blue. Analytical Chemistry, 1-8. https://doi.org/10.1021/acs.analchem.1c04465
  6. Cole-Dai J, Ferris DG, Kennedy JA, Sigl M, McConnell JR, Fudge TJ, Geng L, Maselli OJ, Taylor KC, Souney JM (2021) Comprehensive record of volcanic eruptions in the Holocene (11,000 years) from the WAIS Divide, Antarctica ice core. Journal of Geophysical Research: Atmospheres, 126, e2020JD032855. https://doi.org/10.1029/2020JD032855
  7. Goddard PB, Tabor CR, Jones TR (2021) Utilizing Ice Core and Climate Model Data to Understand Seasonal West Antarctic Variability. Journal of Climate, 1-55. https://doi.org/10.1175/JCLI-D-20-0822.1
  8. Kahle EC, Steig EJ, Jones TR, Fudge TJ, Koutnik MR, Morris VA, Vaughn BR, Schauer AJ, Stevens CM, Conway H, Waddington ED, Buizert C, Epifanio J, White JWC (2021) Reconstruction of temperature, accumulation rate, and layer thinning from an ice core at South Pole, using a statistical inverse method. Journal of Geophysical Research: Atmospheres, 126, e2020JD033300. https://doi.org/10.1029/2020JD033300
  9. Koffman BG, Goldstein SL, Winckler G, Kaplan MR, Kreutz KJ, Bolge L, Bory A, Biscaye P (2021) Late Holocene dust provenance at Siple Dome, Antarctica. Quaternary Science Reviews, 274, 107271. https://doi.org/10.1016/j.quascirev.2021.107271
  10. Liu P, Kaplan J, Mickley LJ, Li Y, Chellman NJ, Arienzo MM, Kodros JK, Pierce JR, Sigl M, Freitag J, Mulvaney R, Curran MAJ, McConnell JR (2021) Improved estimates of preindustrial biomass burning reduce the magnitude of aerosol climate forcing in the Southern Hemisphere. Science Advances, 7(22), eabc1379. https://doi.org/10.1126/sciadv.abc1379
  11. Lewis G, Osterberg E, Hawley R, Marshall HP, Meehan T, Graeter K, McCarthy F, Overly T, Thundercloud Z, Ferris D, Koffman BG, Dibb J (2021) Atmospheric blocking drives recent albedo change across the western Greenland ice sheet percolation zone. Geophysical Research Letters, 48, e2021GL092814. https://doi.org/10.1029/2021GL092814
  12. McConnell JR, Chellman NJ, Mulvaney R, Eckhardt S, Stohl A, Plunkett G, Kipfstuhl S, Freitag J, Isaksson E, Gleason KE, Brugger SO, McWethy DB , Abram NJ, Liu P, Aristarain AJ (2021) Hemispheric black carbon increase after the 13th-century Māori arrival in New Zealand. Nature 598, 82–85. https://doi.org/10.1038/s41586-021-03858-9
  13. Osman MB, Coats S, Das SB, McConnell JR, Chellman N (2021) North Atlantic jet stream projections in the context of the past 1,250 years. Proceedings of the National Academy of Sciences Sep 2021, 118 (38) e2104105118. https://doi.org/10.1073/pnas.2104105118
  14. Osman MB, Smith BE, Trusel LD, Das SB, McConnell JR, Chellman N, Arienzo M, Sodemann H (2021) Abrupt Common Era hydroclimate shifts drive west Greenland ice cap change. Nature Geoscience. https://doi.org/10.1038/s41561-021-00818-w
  15. Shackleton S, Menking JA, Brook E, Buizert C, Dyonisius MN, Petrenko VV, Baggenstos D, Severinghaus JP (2021) Evolution of mean ocean temperature in Marine Isotope Stage 4. Climate of the Past, 17, 2273-2289. https://doi.org/10.5194/cp-17-2273-2021
  16. Souney J, Twickler M, Aydin M, Steig E, Fudge T, Street L, Nicewonger MR, Kahle EC, Johnson JA, Kuhl TW, Casey KA, Fegyveresi JM, Nunn RM, Hargreaves G (2021) Core handling, transportation and processing for the South Pole ice core (SPICEcore) project. Annals of Glaciology, 1-13. https://doi.org/10.1017/aog.2020.80
  17. Steig EJ, Jones TR, Schauer AJ, Kahle EC, Morris VA, Vaughn BH, Davidge L, White JWC (2021) Continuous-Flow Analysis of δ17O, δ18O, and δD of H2O on an Ice Core from the South Pole. Frontiers in Earth Science, 9:640292, 1-14. https://doi.org/10.3389/feart.2021.640292
  18. Stolper DA, Bender ML, Dreyfus GB, Yan Y, Higgins JA (2021) A Pleistocene ice core record of atmospheric O2 concentrations. Science, 353(6306), 1427-1430. https://doi.org/10.1126/science.aaf5445
  19. Winski DA, Osterberg EC, Kreutz KJ, Ferris DG, Cole‐Dai J, Thundercloud Z, Huang J, Alexander B, Jaeglé L, Kennedy JA, Larrick C, Kahle EC, Steig EJ, Jones TR (2021) Seasonally‐Resolved Holocene Sea Ice Variability Inferred from South Pole Ice Core Chemistry. Geophysical Research Letters, 48, e2020GL091602. https://doi.org/10.1029/2020GL091602
  20. Zhai S, Wang X, McConnell JR, Geng L, Cole-Dai J, Sigl M, Chellman N, Sherwen T, Pound R, Fujita K, Hattori S, Moch JM, Zhu L, Evans M, Legrand M, Liu P, Pasteris D, Chan Y-C, Murray LT, Alexander B (2021) Anthropogenic impacts on tropospheric reactive chlorine since the preindustrial. Geophysical Research Letters, 48, e2021GL093808. https://doi.org/10.1029/2021GL093808

2020

  1. Abbott PM, Plunkett G, Corona C, Chellman NJ, McConnell JR, Pilcher JR, Stoffel M, and Sigl M (2020) Cryptotephra from the Icelandic Veiðivötn 1477 CE eruption in a Greenland ice core: confirming the dating of 1450s CE volcanic events and assessing the eruption's climatic impact. Climate of the Past. https://doi.org/10.5194/cp-2020-104
  2. Aydin M, Britten GL, Montzka SA, Buizert C, Primeau FW, Petrenko VV, Battle MO, Nicewonger MR, Patterson J, Hmiel B, Saltzman ES (2020) Anthropogenic impacts on atmospheric carbonyl sulfide since the 19th century inferred from polar firn air and ice core measurements. Journal of Geophysical Research: Atmospheres, 125, e2020JD033074. https://doi.org/10.1029/2020JD033074
  3. Blong RJ and Kurbatov AV (2020) Steps and missteps on the path to a 1665-1668 CE date for the VEI 6 eruption of Long Island, Papua New Guinea. Journal of Volcanology and Geothermal Research, 395, 106828. https://doi.org/10.1016/j.jvolgeores.2020.106828
  4. Chellman N, Csank A, Sexauer Gustin M, Arienzo MM, Vargas Estrada M, McConnell JR (2020) Comparison of co-located ice-core and tree-ring mercury records indicates potential radial translocation of mercury in whitebark pine. Science of The Total Environment, 743, 15 November 2020, 140695. https://doi.org/10.1016/j.scitotenv.2020.140695
  5. Dyonisius MN, Petrenko VV, Smith AM, Hua Q, Yang B, Schmitt J, Beck J, Seth B, Bock M, Hmiel B, Vimont I, Menking JA, Shackleton SA, Baggenstos D, Bauska TK, Rhodes RH, Sperlich P, Beaudette R, Harth C, Kalk M, Brook EJ, Fischer H, Severinghaus JP, Weiss RF (2020) Old carbon reservoirs were not important in the deglacial methane budget. Science, 367, 907-910. https://doi.org/10.1126/science.aax0504
  6. Epifanio JA, Brook EJ, Buizert C, Edwards JS, Sowers TA, Kahle EC, Severinghaus JP, Steig EJ, Winski DA, Osterberg EC, Fudge TJ, Aydin M, Hood E, Kalk M, Kreutz KJ, Ferris DG, and Kennedy JA (2020) The SP19 chronology for the South Pole Ice Core – Part 2: gas chronology, Δage, and smoothing of atmospheric records. Climate of the Past, 16, 2431-2444. https://doi.org/10.5194/cp-16-2431-2020
  7. Fudge TJ, Lilien DA, Koutnik M, Conway H, Stevens CM, Waddington ED, Steig EJ, Schauer AJ, Holschuh N (2020) Advection and non-climate impacts on the South Pole Ice Core. Climate of the Past, 16, 819-832. https://doi.org/10.5194/cp-16-819-2020
  8. Goldstein SJ and Denton JS (2020) Ice ages: Evidence for past melting at the base of the GISP2 ice core from uranium-thorium disequilibria dating. Earth and Planetary Science Letters, 548. https://doi.org/10.1016/j.epsl.2020.116474
  9. Gura C and Rogers SO (2020) Metatranscriptomic and Metagenomic Analysis of Biological Diversity in Subglacial Lake Vostok (Antarctica). Biology, 9(3), 55, 1-20. https://doi.org/10.3390/biology9030055
  10. Hmiel B, Petrenko VV, Dyonisius MN, Buizert C, Smith AM, Place PF, Harth C, Beaudette R, Hua Q, Yang B, Vimont I, Michel SE, Severinghaus JP, Etheridge D, Bromley T, Schmitt J, Faïn X, Weiss RF, Dlugokencky E (2020) Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions. Nature, 578, 409-413. https://doi.org/10.1038/s41586-020-1991-8
  11. Kaspari SD, Pittenger D, Jenk TM, Morgenstern U, Schwikowski M, Buenning N, Stott L (2020) Twentieth Century Black Carbon and Dust Deposition on South Cascade Glacier, Washington State, USA as Reconstructed from a 158 m Long Ice Core. Journal of Geophysical Research: Atmospheres, 125, e2019JD031126. https://doi.org/10.1029/2019JD031126
  12. McConnell JR, Sigl M, Plunkett G, Burke A, Kim WM, Raible CC, Wilson AI, JG Manning, Ludlow F, NJ Chellman, HM Innes, Yang Z, Larsen JF, Schaefer JR, Kipfstuhl S, Mojtabavi S, Wilhelms F, Opel T, Meyer H, Steffensen JP (2020) Extreme climate after massive eruption of Alaska’s Okmok volcano in 43 BCE and effects on the late Roman Republic and Ptolemaic Kingdom. Proceedings of the National Academy of Sciences, 202002722. https://doi.org/10.1073/pnas.2002722117
  13. Nicewonger MR, Aydin M, Prather MJ and Saltzman ES (2020) Extracting a history of global fire emissions for the past millennium from ice core records of acetylene, ethane, and methane. Journal of Geophysical Research: Atmospheres, 125, e2020JD032932. https://doi.org/10.1029/2020JD032932
  14. Nicewonger MR, Aydin M, Prather MJ and Saltzman ES (2020) Reconstruction of paleofire emissions over the past millennium from measurements of ice core acetylene. Geophysical Research Letters 47, e2019GL085101. https://doi.org/10.1029/2019GL085101
  15. Plunkett G, Sigl M, Pilcher JR, McConnell JR, Chellman N, Steffensen J, Büntgen U (2020) Smoking guns and volcanic ash: the importance of sparse tephras in Greenland ice cores. Polar Research, 39. https://doi.org/10.33265/polar.v39.3511
  16. Smith VC, Costa A, Aguirre-Díaz G, Pedrazzi D, Scifo A, Plunkett G, Poret M, Tournigand P-Y, Miles D, Dee MW, McConnell JR, Sunyé-Puchol I, Harris PD, Sigl M, Pilcher JR, Chellman N, Gutiérrez E (2020) The magnitude and impact of the 431 CE Tierra Blanca Joven eruption of Ilopango, El Salvador. Proceedings of the National Academy of Sciences, 202003008. https://doi.org/10.1073/pnas.2003008117
  17. Winsor K, Swanger KM, Babcock E, Valletta RD, and Dickson JL (2020) Rock glacier characteristics serve as an indirect record of multiple alpine glacier advances in Taylor Valley, Antarctica. The Cryosphere, 14, 1-16, https://doi.org/10.5194/tc-14-1-2020

2019

  1. Aarons SM, Aciego SM, McConnell JR, Delmonte B, Baccolo G (2019) Dust transport to the Taylor Glacier, Antarctica, during the last interglacial. Geophysical Research Letters, 46, 2261- 2270. https://doi.org/10.1029/2018GL081887
  2. Baker I (2019) Microstructural characterization of snow, firn and ice. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377, 2146, https://doi.org/10.1098/rsta.2018.0162
  3. Burke A, Moore KA, Sigl M, Nita DC, McConnell JR, Adkins JF (2019) Stratospheric eruptions from tropical and extra-tropical volcanoes constrained using high-resolution sulfur isotopes in ice cores. Earth and Planetary Science Letters, 521, 113-119. https://doi.org/10.1016/j.epsl.2019.06.006
  4. Fegyveresi J, Alley R, Voigt D, Fitzpatrick J, Wilen L (2019) Instruments and methods: A case study of ice core bubbles as strain indicators. Annals of Glaciology, 60(78), 8-19. https://doi.org/10.1017/aog.2018.23
  5. Fegyveresi JM, Fudge TJ, Ferris DG, Winski DA, Alley RB (2019) Visual Observations and Stratigraphy of the South Pole Ice Core (SPICEcore): A Preliminary Holocene (~10.2 ka) Accumulation Record and Depth-Age Chronology. ERDC/CRREL TR-19-10, 1-44. http://dx.doi.org/10.21079/11681/33378
  6. Hartman LH, Kurbatov AV, Winski DA, Cruz-Uribe AM, Davies SM, Dunbar NW, Iverson NA, Aydin M, Fegyveresi JM, Ferris DG, Fudge TJ, Osterberg EC, Hargreaves GM, and Yates MG (2019) Volcanic glass properties from 1459 C.E. volcanic event in South Pole ice core dismiss Kuwae caldera as a potential source. Scientific Reports, 9:14437, 1-7. https://doi.org/10.1038/s41598-019-50939-x
  7. Lee MJ, Kyle PR, Iverson NA, Lee JI, Han Y (2019) Rittmann volcano, Antarctica as the source of a widespread 1252±2 CE tephra layer in Antarctica ice. Earth and Planetary Science Letters, 521, 169-176. https://doi.org/10.1016/j.epsl.2019.06.002
  8. McConnell JR, Chellman NJ, Wilson AI, Stohl A, Arienzo MM, Eckhardt S, Fritzsche D, Kipfstuhl S, Opel T, Place PF, Steffensen JP(2019) Pervasive Arctic lead pollution suggests substantial growth in medieval silver production modulated by plague, climate, and conflict. Proceedings of the National Academy of Sciences, 1-6. https://doi.org/10.1073/pnas.1904515116
  9. Osman MB, Das SB, Trusel LD, Evans MJ, Fischer H, Grieman MM, Kipfstuhl S, McConnell JR, Saltzman ES (2019) Industrial-era decline in subarctic Atlantic productivity. Nature, 569, 551–555. https://doi.org/10.1038/s41586-019-1181-8
  10. Swanger KM, Babcock E, Winsor K, Valletta RD (2019) Rock glaciers in Pearse Valley, Antarctica record outlet and alpine glacier advance from MIS 5 through the Holocene. Geomorphology, 336, 40-51, https://doi.org/10.1016/j.geomorph.2019.03.019
  11. Winski DA, Fudge TJ, Ferris DG, Osterberg EC, Fegyveresi JM, Cole-Dai J, Thundercloud Z, Cox TS, Kreutz KJ, Ortman N, Buizert C, Epifanio J, Brook EJ, Beaudette R, Severinghaus J, Sowers T, Steig EJ, Kahle EC, Jones TR, Morris V, Aydin M, Nicewonger MR, Casey KA, Alley RB, Waddington ED, Iverson NA, Dunbar NW, Bay RC, Souney JM, Sigl M and McConnell JR (2019) The SP19 chronology for the South Pole Ice Core -- Part 1: volcanic matching and annual layer counting. Climate of the Past, 15(5), 1793-1808. https://doi.org/10.5194/cp-15-1793-2019
  12. Yan Y, Bender ML, Brook EJ, Clifford HM, Kemeny PC, Kurbatov AV, Mackay S, Mayewski PA, Ng J, Severinghaus JP, and Higgins JA (2019) Two-million-year-old snapshots of atmospheric gases from Antarctic ice. Nature, 574, 663–666. https://doi.org/10.1038/s41586-019-1692-3
  13. Yeung LY, Murray LT, Martinerie P, Witrant E, Hu H, Banerjee A, Orsi A, Chappellaz J (2019) Isotopic constraint on the twentieth-century increase in tropospheric ozone. Nature, 570, 224–227. https://doi.org/10.1038/s41586-019-1277-1

2018

  1. Bereiter B, Kawamura K, Severinghaus JP (2018) New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples. Rapid Commun Mass Spectrom, 32, 801-814, https://doi.org/10.1002/rcm.8099
  2. Bereiter B, Shackleton S, Baggenstos D, Kawamura K, Severinghaus J (2018) Mean global ocean temperatures during the last glacial transition. Nature, 553, 39-44, https://doi.org/10.1038/nature25152
  3. Brook E, Buizert C (2018) Antarctic and global climate history viewed from ice cores. Nature, 558, 200-208, https://doi.org/10.1038/s41586-018-0172-5
  4. Buizert C, Keisling BA, Box JE, He F, Carlson AE, Sinclair G, and DeConto RM (2018) Greenland-wide seasonal temperatures during the last deglaciation. Geophysical Research Letters, 45, 1905-1914, https://doi.org/10.1002/2017GL075601
  5. Buizert C, Sigl M, Severi M, Markle BR, Wettstein JJ, McConnell JR, Pedro JB, Sodemann H, Goto-Azuma K, Kawamura K, Fujita S, Motoyama H, Hirabayashi M, Uemura R, Stenni B, Parrenin F, He F, Fudge TJ, Steig EJ (2018) Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature, 563, 681-685. https://doi.org/10.1038/s41586-018-0727-5
  6. Cole-Dai J, Peterson KM, Kennedy JA, Cox TS, and Ferris DG (2018) Evidence of Influence of Human Activities and Volcanic Eruptions on Environmental Perchlorate from a 300-Year Greenland Ice Core Record. Environmental Science & Technology Article ASAP. https://pubs.acs.org/doi/10.1021/acs.est.8b01890
  7. Fegyveresi JM, Alley RB, Muto A, Orsi AJ, and Spencer MK (2018) Surface formation, preservation, and history of low-porosity crusts at the WAIS Divide site, West Antarctica. The Cryosphere, 12, 325-341. https://doi.org/10.5194/tc-12-325-2018
  8. Fegyveresi JM, Alley RB, Voigt DE, Fitzpatrick JJ, Wilen, LA (2018) Instruments and methods: A case study of ice core bubbles as strain indicators. Annals of Glaciology, 1-12. https://doi.org/10.1017/aog.2018.23
  9. Jones TR, Roberts WHG, Steig EJ, Cuffey KM, Markle BR, and White JWC (2018) Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography. Nature, 554, 351–355, https://doi.org/10.1038/nature24669
  10. Kahle EC, Holme C, Jones TR, Gkinis V, and Steig EJ (2018) A Generalized Approach to Estimating Diffusion Length of Stable Water Isotopes from Ice‐Core Data. J. Geophys. Res. Earth Surf. Earth Surface, 123. https://doi.org/10.1029/2018JF004764
  11. Lilien DA, Fudge TJ, Koutnik MR, Conway H, Osterberg EC, Ferris DG, Waddington ED and Stevens MC (2018) Holocene ice‐flow speedup in the vicinity of the South Pole. Geophysical Research Letters, 45, 6557–6565. https://doi.org/10.1029/2018GL078253
  12. Markle BR, Steig EJ, Roe GH, Winckler G, McConnell JR (2018) Concomitant variability in high-latitude aerosols, water isotopes and the hydrologic cycle. Nature Geoscience, 11, 853-859, https://doi.org/10.1038/s41561-018-0210-9
  13. Nicewonger MR, Aydin M, Prather MJ, Saltzman ES (2018) Large changes in biomass burning over the last millennium inferred from paleoatmospheric ethane in polar ice cores. Proceedings of the National Academy of Sciences, 115(49), 12413-12418. https://doi.org/10.1073/pnas.1807172115
  14. Polashenski DJ, Osterberg EC, Koffman BG, Winski D, Stamieszkin K, Kreutz KJ, Wake CP, Ferris DG, Introne D, Campbell S, Lewis GM (2018) Denali ice core methanesulfonic acid records North Pacific marine primary production. Journal of Geophysical Research: Atmospheres, 123, https://doi.org/10.1029/2017JD028123
  15. Prokopiou M, Sapart CJ, Rosen J, Sperlich P, Blunier T, Brook E, van de Wal RSW, Röckmann T (2018) Changes in the isotopic signature of atmospheric nitrous oxide and its global average source during the last three millennia. Journal of Geophysical Research: Atmospheres, 123, https://doi.org/10.1029/2018JD029008
  16. Santibáñez PA, Maselli OJ, Greenwood MC, Grieman MM, Saltzman ES, McConnell JR and Priscu JC (2018) Prokaryotes in the WAIS Divide ice core reflect source and transport changes between Last Glacial Maximum and the early Holocene. Global Change Biology. https://doi.org/10.1111/gcb.14042
  17. Trusel LD, Das SB, Osman MB, Evans MJ, Smith BE, Fettweis X, McConnell JR, Noel BPY, van den Broeke MR (2018) Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature, 564, 104-108, https://doi.org/10.1038/s41586-018-0752-4
  18. Winski D, Osterberg E, Kreutz K, Wake C, Ferris D, Campbell S, Baum M, Bailey A, Birkel S, Introne D, Handley M (2018) A 400‐year ice core melt layer record of summertime warming in the Alaska Range. Journal of Geophysical Research: Atmospheres, 123, 3594–3611. https://doi.org/10.1002/2017JD027539

2017

  1. Aarons SM, Aciego SM, Arendt CA, Blakowski MA, Steigmeyer A, Gabrielli P, Sierra-Hernandez MR, Beaudon E, Delmonte B, Baccolo G, May NW and Pratt KA (2017) Dust composition changes from Taylor Glacier (East Antarctica) during the last glacial-interglacial transition: A multi-proxy approach. Quaternary Science Reviews, 162, 60-71. https://doi.org/10.1016/j.quascirev.2017.03.011
  2. Arienzo MM, McConnell JR, Murphy LN, Chellman N, Das S, Kipfstuhl S and Mulvaney R (2017) Holocene black carbon in Antarctica paralleled Southern Hemisphere climate. J. Geophys. Res. Atmos., 122, 6713–6728. https://doi.org/10.1002/2017JD026599
  3. Chan W, Mah M, Bay R and Talghader J (2017) Long-wavelength optical logging for high-resolution detection of ash layers in glacier ice. Journal of Glaciology,63(237), 17-21. https://doi.org/10.1017/jog.2016.105
  4. Chellman N, McConnell JR, Arienzo M, Pederson GT, Aarons SM and Csank A (2017) Reassessment of the Upper Fremont Glacier Ice-Core Chronologies by Synchronizing of Ice-Core-Water Isotopes to a Nearby Tree-Ring Chronology. Environmental Science & Technology, 51(8), 4230-4238. https://doi.org/10.1021/acs.est.6b06574
  5. D'Andrilli J, Foreman CM, Sigl M, Priscu JC and McConnell JR (2017) A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core. Clim. Past, 13, 533-544. https://doi.org/10.5194/cp-13-533-2017
  6. D’Andrilli J, Smith HJ, Dieser M, Foreman CM (2017) Climate driven carbon and microbial signatures through the last ice age. Geochemical Perspectives Letters, 4, 29-34. https://doi.org/10.7185/geochemlet.1732
  7. Dunbar NW, Iverson NA, Van Eaton AR, Sigl M, Alloway BV, Kurbatov AV, Mastin LG, McConnell JR and Wilson CJN (2017) New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica. Scientific Reports, 7:12238. https://doi.org/10.1038/s41598-017-11758-0
  8. Geng L, Murray LT, Mickley LJ, Lin P, Fu Q, Schauer AJ and Alexander B (2017) Isotopic evidence of multiple controls on atmospheric oxidants over climate transitions. Nature. https://doi.org/10.1038/nature22340
  9. Iverson NA, Lieb-Lappen R, Dunbar NW, Obbard R, Kim E and Golden E (2017) The first physical evidence of subglacial volcanism under the West Antarctic Ice Sheet. Scientific Reports, 7:11457. https://doi.org/10.1038/s41598-017-11515-3
  10. Jones TR, Cuffey KM, White JWC, Steig EJ, Buizert C, Markle BR, McConnell JR and Sigl M (2017) Water Isotope Diffusion in the WAIS Divide Ice Core During the Holocene and Last Glacial. Journal of Geophysical Research: Earth Surface, 122, 290–309. https://doi.org/10.1002/2016JF003938
  11. Jones TR, White JWC, Steig EJ, Vaughn BH, Morris V, Gkinis V, Markle BR and Schoenemann SW (2017) Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores. Atmos. Meas. Tech., 10, 617–632. https://doi.org/10.5194/amt-10-617-2017
  12. Kluskiewicz D, Waddington E, Anandakrishnan S, Voigt D, Matsuika K and McCarthy M (2017) Sonic methods for measuring crystal orientation fabric in ice, and results from the West Antarctic ice sheet (WAIS) Divide. Journal of Glaciology, 1-15. https://doi.org/10.1017/jog.2017.20
  13. Koffman BG, Dowd EG, Osterberg EC, Ferris DG, Hartman LH, Wheatley SD, Kurbatov AV, Wong GJ, Markle BR, Dunbar NW, Kreutz KJ, and Yates Y (2017) Rapid transport of ash and sulfate from the 2011 Puyehue-Cordón Caulle (Chile) eruption to West Antarctica. J. Geophys. Res. Atmos., 122. https://doi.org/10.1002/2017JD026893
  14. Manning JG, Ludlow F, Stine AR, Boos WR, Sigl M, Marlon JR (2017) Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nature Communications, 8, 900, 1-9. https://doi.org/10.1038/s41467-017-00957-y
  15. Markle BR, Steig EJ, Buizert C, Schoenemann SW, Bitz CM, Fudge TJ, Pedro JB, Ding Q, Jones TR, White JWC and Sowers T (2017) Global atmospheric teleconnections during Dansgaard-Oeschger events. Nature Geoscience, 10, 36-40. https://doi.org/10.1038/ngeo2848
  16. Maselli OJ, Chellman NJ, Grieman M, Layman L, McConnell JR, Pasteris D, Rhodes RH, Saltzman E, and Sigl M (2017) Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine. Climate of the Past, 13, 39-59. https://doi.org/10.5194/cp-13-39-2017
  17. McConnell JR, Burke A, Dunbar NW, Kohler P, Thomas JL, Arienzo MM, Chellman NJ, Maselli OJ, Sigl M, Adkins JF, Baggenstos D, Burkhart JF, Brook EJ, Buizert C, Cole-Dai J, Fudge TJ, Knorr G, Graf H-F, Grieman MM, Iverson N, McGwire KC, Mulvaney R, Paris G, Rhodes RH, Saltzman ES, Severinghaus JP, Steffensen JP, Taylor KC and Winckler G (2017) Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences, 114(38), 10035-10040. https://doi.org/10.1073/pnas.1705595114
  18. Osterberg EC, Winski DA, Kreutz KJ, Wake CP, Ferris DG, Campbell S, Introne D, Handley M and Birkel S (2017) The 1200 year composite ice core record of Aleutian Low intensification. Geophys. Res. Lett., 44, 7447–7454. https://doi.org/10.1002/2017GL073697
  19. Rhodes RH, Brook EJ, McConnell JR, Blunier T, Sime CL, Fain X and Mulvaney R (2017) Atmospheric methane variability: Centennial-scale signals in the Last Glacial Period. Global Biogeochem. Cycles, 31. https://doi.org/10.1002/ 2016GB005570
  20. Winski D, Osterberg E, Ferris D, Kreutz K, Wake C, Campbell S, Hawley R, Roy S, Birkel S, Introne D, Handley M (2017) Industrial-age doubling of snow accumulation in the Alaska Range linked to tropical ocean warming. Scientific Reports, 7:17869. https://doi.org/10.1038/s41598-017-18022-5
  21. Yang J-W, Ahn J, Brook EJ and Ryu Y (2017) Atmospheric methane control mechanisms during the early Holocene. Climate of the Past, 13, 1227-1242. https://doi.org/10.5194/cp-13-1227-2017

2016

  1. Aarons SM, Aciego SM, Gabrielli P, Delmonte B, Koornneef JM, Uglietti C, Wegner A, Blakowski MA and Bouman C (2016) Ice core record of dust sources in the western United States over the last 300 years. Chemical Geology, 442, 160-173. https://doi.org/10.1016/j.chemgeo.2016.09.006
  2. Aizen EM, Aizen VB, Takeuchi N, Mayewski PA, Grigholm B, Joswiak DR, Nikitin SA, Fujita K, Nakawo M, Zapf A and Schwikowski M (2016) Abrupt and moderate climate changes in the mid-latitudes of Asia during the Holocene. Journal of Glaciology, 62(233), 411-439. https://doi.org/10.1017/jog.2016.34
  3. Aydin M, Campbell JE, Fudge TJ, Cuffey KM, Nicewonger MR, Verhulst KR and Saltzman ES (2016) Changes in atmospheric carbonyl sulfide over the last 54,000 years inferred from measurements in Antarctic ice cores. Journal of Geophysical Research: Atmospheres, 121, 1943-1954. https://doi.org/10.1002/2015JD024235
  4. Bauska TK, Baggenstos D, Brook EJ, Mix AC, Marcott SA, Petrenko VV, Schaefer H, Severinghaus JP and Lee JE (2016) Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proceedings of the National Academy of Sciences, 113(13), 3465-3470. https://doi.org/10.1073/pnas.1513868113
  5. Buizert C and Severinghaus JP (2016) Dispersion in deep polar firn driven by synoptic-scale surface pressure variability, The Cryosphere, 10, 2099-2111. https://doi.org/10.5194/tc-10-2099-2016
  6. Castello JD and Rogers SO (2016) A Synopsis of the Past, an Evaluation of the Current, and a Glance toward the Future. Life in Ancient Ice, p.289
  7. Cuffey KM, Clow GD, Steig EJ, Buizert C, Fudge TJ, Koutnik M, Waddington ED, Alley RA and Severinghaus JP (2016) Deglacial temperature history of West Antarctica. Proceedings of the National Academy of Sciences, 113(50), 14249-1425. https://doi.org/10.1073/pnas.1609132113
  8. Fegyveresi JM, Alley RB, Fitzpatrick JJ, Cuffey KM, McConnell JR, Voigt DE, Spencer MK and Stevens NT (2016) Five millennia of surface temperatures and ice-core bubble characteristics from the WAIS Divide deep core, West Antarctica. Paleoceanography. https://doi.org/10.1002/2015PA002851
  9. Fudge TJ, Markle BR, Cuffey K, Buizert C, Taylor K, Steig EJ, Waddington E, Conway H and Koutnik M (2016) Variable relationship between accumulation and temperature in West Antarctica for the past 31,000 years. Geophysical Research Letters, 43(8), 3795-3803. https://doi.org/10.1002/2016GL068356
  10. Fudge TJ, Taylor KC, Waddington EW, Fitzpatrick JJ and Conway H (2016) Electrical stratigraphy of the WAIS Divide ice core: Identification of centimeter-scale irregular layering. Journal of Geophysical Research: Earth Surface, 121, 1218-1229. https://doi.org/10.1002/2016JF003845
  11. Haines S, Mayewski P, Kurbatov A, Maasch K, Sneed S, Spaulding N, Dixon DA, and Bohleber P (2016) Ultra-high resolution snapshots of three multi-decadal periods in an Antarctic ice core. Journal of Glaciology, 62(231), 31-36. https://doi.org/10.1017/jog.2016.5
  12. Iverson NA, Kalteyer D, Dunbar NW, Kurbatov A and Yates M (2016) Advancements and best practices for analysis and correlation of tephra and cryptotephra in ice. Quaternary Geochronology, 10.1016/j.quageo.2016.09.008. https://doi.org/10.1016/j.quageo.2016.09.008
  13. Jiang S, Cox TS, Cole-Dai J, Peterson KM and Shi G (2016) Trends of perchlorate in Antarctic snow: Implications for atmospheric production and preservation in snow. Geophysical Research Letters, 43, 9913-9919. https://doi.org/10.1002/2016GL070203
  14. Klein ES, Nolan M, McConnell J, Sigl M, Cherry J, Young J and Welker JM (2016) McCall Glacier record of Arctic climate change: Interpreting a northern Alaska ice core with regional water isotopes. Quaternary Science Reviews, 131, 274-284. https://doi.org/10.1016/j.quascirev.2015.07.030
  15. Koutnik M, Fudge TJ, Conway H, Waddington Ed, Neumann T, Cuffey K, Buizert C and Taylor K (2016) Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice-core site. Journal of Geophysical Research: Earth Surface, 121. https://doi.org/10.1002/2015JF003668
  16. Legrand M, McConnell J, Fischer H, Wolff EW, Preunkert S, Arienzo M, Chellman N, Leuenberger D, Maselli O, Place P, Sigl M, Schüpbach S, and Flannigan M (2016) Boreal fire records in Northern Hemisphere ice cores: a review. Climate of the Past, 12, 2033-2059. https://doi.org/10.5194/cp-12-2033-2016
  17. Nicewonger MR, Verhulst KR, Aydin M, and Saltzman ES (2016) Preindustrial atmospheric ethane levels inferred from polar ice cores: A constraint on the geologic sources of atmospheric ethane and methane. Geophys. Res. Lett., 43, 214–221. https://doi.org/10.1002/2015GL066854
  18. Pedro JB, Martin T, Steig EJ, Jochum M, Park W and Rasmussen SO (2016) Southern Ocean deep convection as a driver of Antarctic warming events. Geophysical Research Letters, 43, 2192-2199. https://doi.org/10.1002/2016GL067861
  19. Rhodes RH, Fain X, Brook EJ, McConnell JR, Maselli OJ, Sigl M, Edwards J, Buizert C, Blunier T, Chappellaz J and Freitag J (2016) Local artifacts in ice core methane records caused by layered bubble trapping and in situ production: a multi-site investigation. Climate of the Past, 12, 1061-1077. https://doi.org/10.5194/cp-12-1061-2016
  20. Sambrotto R and Burckle L (2016) The Nature and Likely Sources of Biogenic Particles Found in Ancient Ice from Antarctica. Life In Ancient Ice, 94
  21. Santibanez PA, McConnell JR and Priscu JC (2016) A flow cytometric method to measure prokaryotic records in ice cores: an example from the West Antarctic Ice Sheet Divide drilling site. Journal of Glaciology, 62(234), 655-673. https://doi.org/10.1017/jog.2016.50
  22. Schaefer JM, Finkel RC, Balco G, Alley RB, Caffee MW, Briner JP, Young NE, Gow AJ and Schwartz R (2016) Greenland was nearly ice-free for extended periods during the Pleistocene. Nature, 540, 252-255. https://doi.org/10.1038/nature20146
  23. Sigl M, Ferris D, Fudge TJ, Winstrup M, Cole-Dai J, McConnell JR, Taylor KC, Welten KC, Woodruff TE, Adolphi F, Brook EJ, Bisiaux M, Buizert C, Caffee MW, Dunbar N, Edwards R, Geng L, Iverson N, Koffman B, Layman L, Maselli OJ, McGwire K, Muscheler R, Nishiizumi K, Pasteris DR, Rhodes RH and Sowers TA (2016) The WAIS Divide deep ice core WD2014 chronology - Part 2: Annual-layer counting (0-31 ka BP). Climate of the Past, 12, 769-786. https://doi.org/10.5194/cp-12-769-2016
  24. Taylor K (2016), Introduction to special section on the WAIS Divide Special Issue of Paleoceanography. Paleoceanography, 31, 1474–1478. https://doi.org/10.1002/2016PA002995
  25. Yau AM, Bender ML, Robinson A and Brook EJ (2016) Reconstructing the last interglacial at Summit, Greenland: Insights from GISP2. Proceedings of the National Academy of Sciences, 113(35), 9710–9715. https://doi.org/10.1073/pnas.1524766113

2015

  1. Bauska TK, Joos F, Mix AC, Roth R, Ahn J and Brook EJ (2015) Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium. Nature Geoscience, 8, 383-387. https://doi.org/10.1038/ngeo2422
  2. Buizert C and Schmittner A (2015) Southern Ocean control of glacial AMOC stability and Dansgaard-Oeschger interstadial duration. Paleoceanography, 30(12), 1595-1612. https://doi.org/10.1002/2015PA002795
  3. Buizert C, Cuffey KM, Severinghaus JP, Baggenstos D, Fudge TJ, Steig EJ, Markle BR, Winstrup M, Rhodes RH, Brook EJ, Sowers TA, Clow GD, Cheng H, Edwards RL, Sigl M, McConnell JR and Taylor KC (2015) The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68-31 ka BP) and the gas age-ice age difference. Climate of the Past, 11, 153-173. https://doi.org/10.5194/cp-11-153-2015
  4. Frieler K, Clark PU, He F, Buizert C, Reese R, Ligtenberg SRM, van den Broeke MR, Winkelmann R and Levermann A (2015) Consistent evidence of increasing Antarctic accumulation with warming. Nature Climate Change, 5, 348-352. https://doi.org/10.1038/nclimate2574
  5. Geng L, Zatko MC, Alexander B, Fudge TJ, Schauer AJ, Murray LT and Mickley LJ (2015) Effects of postdepositional processing on nitrogen isotopes of nitrate in the Greenland Ice Sheet Project 2 ice core. Geophysical Research Letters, 42(13), 5346–5354. https://doi.org/10.1002/2015GL064218
  6. Grimm RE, Stillman DE and MacGregor JA (2015) Dielectric signatures and evolution of glacier ice. Journal of Glaciology, 61(230), 1159-1170. https://doi.org/10.3189/2015JoG15J113
  7. Higgins JA, Kurbatov AV, Spaulding NE, Brook E, Introne DS, Chimiak LM, Yan Y, Mayewski PA, and Bender ML (2015) Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica. PNAS, 112(22), 6887-6891. https://doi.org/10.1073/pnas.1420232112
  8. Kobashi T, Ikeda-Fukazawa T, Suwa M, Schwander J, Kameda T, Lundin J, Hori A, Doring M and Leuenberger M (2015) Post-bubble close-off fractionation of gases in polar firn and ice cores: effects of accumulation rate on permeation through overloading pressure. Atmos. Chem. Phys. Discuss., 15, 15711–15753. https://doi.org/10.5194/acpd-15-15711-2015
  9. Mekhaldi F, Muscheler R, Adolphi F, Aldahan A, Beer J, McConnell JR, Possnert G, Sigl M, Svensson A, Synal H-A, Welten KC and Woodruff TE (2015) Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications, 6:8611. https://doi.org/10.1038/ncomms9611
  10. Mitchell LE, Buizert C, Brook EJ, Breton DJ, Fegyveresi J, Baggenstos D, Orsi A, Severinghaus J, Alley RB, Albert M, Rhodes RH, McConnell JR, Sigl M, Maselli O, Gregory S and Ahn J (2015) Observing and modeling the influence of layering on bubble trapping in polar firn. Journal of Geophysical Research, 120(6), 2558-2574. https://doi.org/10.1002/2014JD022766
  11. Nicewonger MR, Verhulst KR, Aydin M and Saltzman ES (2015) Preindustrial atmospheric ethane levels inferred from polar ice cores: a constraint on the geologic sources of atmospheric ethane and methane. Geophysical Research Letters, 43(1), 214-221. https://doi.org/10.1002/2015GL066854
  12. Orsi AJ, Kawamura K, Fegyveresi JM, Headly MA, Alley RB and Severinghaus JP (2015) Differentiating bubble-free layers from melt layers in ice cores using noble gases. Journal of Glaciology, 61(227), 585-594. https://doi.org/10.3189/2015JoG14J237
  13. Pedro JB, Bostock HC, Bitz CM, He F, Vandergoes MJ, Steig EJ, Chase BM, Krause CE, Rasmussen SO, Markle BR and Cortese G (2015) The spatial extent and dynamics of the Antarctic Cold Reversal. Nature Geoscience, 9, 51-56. https://doi.org/10.1038/NGEO2580
  14. Peterson K, Cole-Dai J, Brandis D, Cox T, and Splett S (2015) Rapid measurement of perchlorate in polar ice cores down to sub-ng L−1 levels without pre-concentration. Analytical and Bioanalytical Chemistry, 407, 7965-7972. https://doi.org/10.1007/s00216-015-8965-y
  15. Rhodes RH, Brook EJ, Chiang JCH, Blunier T, Maselli OJ, McConnell JR, Romanini D and Severinghaus JP (2015) Enhanced tropical methane production in response to iceberg discharge in the North Atlantic. Science, 348(6238), 1016-1019. https://doi.org/10.1126/science.1262005
  16. Sigl M, Winstrup M, McConnell JR, Welten KC, Plunkett G, Ludlow F, Büntgen U, Caffee M, Chellman N, Dahl-Jensen D, Fischer H, Kipfstuhl S, Kostick C, Maselli OJ, Mekhaldi F, Mulvaney R, Muscheler R, Pasteris DR, Pilcher JR, Salzer M, Schüpbach S, Steffensen JP, Vinther BM and Woodruff TE (2015) Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature. https://doi.org/10.1038/nature14565
  17. Sneed SB, Mayewski PA, Sayre WG, Handley MJ, Kurbatov AV, Taylor KC, Bohleber P, Wagenbach D, Erhardt T and Spaulding NE (2015) New LA-ICP-MS cryocell and calibration technique for sub-millimeter analysis of ice cores. Journal of Glaciology, 61(226), 233-242. https://doi.org/10.3189/2015JoG14J139
  18. Steig EJ, Huybers K, Singh HA, Steiger NJ, Ding Q, Frierson DMW, Popp T, and White JWC (2015) Influence of West Antarctic Ice Sheet collapse on Antarctic surface climate. Geophysical Research Letters, 42, 4862-4868. https://doi.org/10.1002/2015GL063861
  19. WAIS Divide Project Members (2015) Precise interpolar phasing of abrupt climate change during the last ice age. Nature, 520, 661-665. https://doi.org/10.1038/nature14401

2014

  1. Ahn J and Brook EJ (2014) Siple Dome ice reveals two modes of millennial CO2 change during the last ice age. Nature Communications, 5:3723, 1-6. https://doi.org/10.1038/ncomms4723
  2. Ahn J, Brook EJ and Buizert C (2014) Response of atmospheric CO2 to the abrupt cooling event 8200 years ago. Geophysical Research Letters, 41(2), 604-609. https://doi.org/10.1002/2013GL058177
  3. Aydin M, Fudge TJ, Verhulst KR, Nicewonger MR, Waddington ED and Saltzman ES (2014) Carbonyl sulfide hydrolysis in Antarctic ice cores and an atmospheric history for the last 8000 years. Journal of Geophysical Research Atmospheres, 119(13), 8500-8514. https://doi.org/10.1002/2014JD021618
  4. Bauska TK, Brook EJ, Mix AC, and Ross A (2014) High precision dual-inlet IRMS measurements of the stable isotopes of CO2 and the N2O/CO2 ratio from polar ice core samples. Atmos. Meas. Tech. Discuss., 7, 6529-6564. https://doi.org/10.5194/amt-7-3825-2014
  5. Buizert C, Gkinis V, Severinghaus JP, He F, Lecavalier BS, Kindler P, Leuenberger M, Carlson A, Vinther B, Masson-Delmotte V, White JWC, Liu Z, Otto-Bliesner B and Brook EJ (2014) Greenland temperature response to climate forcing during the last deglaciation. Science, 345(6201), 1177-1180. https://doi.org/10.1126/science.1254961
  6. Chan WS, Mah ML, Voigt DE, Fitzpatrick JJ and Talghader JJ (2014) Crystal orientation measurements using transmission and backscattering. Journal of Glaciology, 60(224), 1135-1139. https://doi.org/10.3189/2014JoG14J071
  7. Coplen TB, Qi H, Tarbox L, Lorenz J and Buck B (2014) USGS46 Greenland Ice Core Water - A New Isotopic Reference Material for δ2H and δ18O Measurements of Water. Geostandards and Geoanalytical Research, 38(2), 153–157. https://doi.org/10.1111/j.1751-908X.2013.00267.x
  8. Fitzpatrick JJ, Voigt DE, Fegyveresi JM, Stevens NT, Spencer MK, Cole-Dai J, Alley RB, Jardine GE, Cravens ED, Wilen LA, Fudge TJ and McConnell JR (2014) Physical properties of the WAIS Divide ice core. Journal of Glaciology, 60(224), 1181-1198. https://doi.org/10.3189/2014JoG14J100
  9. Fudge TJ, Waddington ED, Conway H, Lundin JMD and Taylor K (2014) Interpolation methods for Antarctic ice-core timescales: application to Byrd, Siple Dome and Law Dome ice cores. Climate of the Past, 10, 1195-1209. https://doi.org/10.5194/cp-10-1195-2014
  10. Goodwin ID, Browning S, Lorrey AM, Mayewski PA, Phipps SJ, Bertler NA, Edwards RP, Cohen TJ, van Ommen T, Curran C, Barr C and Stager JC (2014) A reconstruction of extratropical Indo-Pacific sea-level pressure patterns during the Medieval Climate Anomaly. Climate Dynamics, 43(5-6), 1197-1219. https://doi.org/10.1007/s00382-013-1899-1
  11. Koffman BG, Handley MJ, Osterberg EC, Wells ML and Kreutz KJ (2014) Dependence of ice-core relative trace-element concentration on acidification. Journal of Glaciology, 60(219), 103-112. https://doi.org/10.3189/2014JoG13J137
  12. Koffman BG, Kreutz KJ, Breton DJ, Kane EJ, Winski DA, Birkel SD, Kurbatov AV and Handley MJ (2014) Centennial-scale variability of the Southern Hemisphere westerly wind belt in the eastern Pacific over the past two millennia. Climate of the Past, 10, 1125-1144. https://doi.org/10.5194/cp-10-1125-2014
  13. Korotkikh EV, Mayewski PA, Dixon D, Kurbatov AV and Handley MJ (2014) Recent increase in Ba concentrations as recorded in a South Pole ice core. Atmospheric Environment, 89, 683–687. https://doi.org/10.1016/j.atmosenv.2014.03.009
  14. Jones TR, White JWC and Popp T (2014) Siple Dome shallow ice cores: a study in coastal dome microclimatology. Climate of the Past, 10, 1253-1267. https://doi.org/10.5194/cp-10-1253-2014
  15. Marcott SA, Bauska TK, Buizert C, Steig EJ, Rosen JL, Cuffey KM, Fudge TJ, Severinghaus JP, Ahn J, Kalk ML, McConnell JR, Sowers T, Taylor KC, White JWC and Brook EJ (2014) Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature, 514, 616–619. https://doi.org/10.1038/nature13799
  16. Mayewski PA, Sneed SB, Birkel SD, Kurbatov AV and Maasch KA (2014) Holocene warming marked by abrupt onset of longer summers and reduced storm frequency around Greenland. Journal of Quaternary Science, 29(1), 99-104. https://doi.org/10.1002/jqs.2684
  17. McConnell JR, Maselli OJ, Sigl M, Vallelonga P, Neumann T, Anschutz H, Bales RC, Curran MAJ, Das SB, Edwards R, Kipfstuhl S, Layman L and Thomas ER (2014) Antarctic-wide array of high-resolution ice core records reveals pervasive lead pollution began in 1889 and persists today. Scientific Reports, 4, 5848. https://doi.org/10.1038/srep05848
  18. Medley B, Joughin I, Smith BE and Das SB (2014) Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. The Cryosphere, 8, 1375-1392. https://doi.org/10.5194/tc-8-1375-2014
  19. Orsi AJ, Cornuelle BD and Severinghaus JP (2014) Magnitude and temporal evolution of Dansgaard–Oeschger event 8 abrupt temperature change inferred from nitrogen and argon isotopes in GISP2 ice using a new least-squares inversion. Earth and Planetary Science Letters, 395, 81–90. https://doi.org/10.1016/j.epsl.2014.03.030
  20. Pasteris DR, McConnell JR, Das SB, Criscitiello AS, Evans MJ, Maselli OJ, Sigl M and Layman L (2014) Seasonally resolved ice core records from West Antarctica indicate a sea ice source of sea-salt aerosol and a biomass burning source of ammonium. Journal of Geophysical Research, 119(14), 9168–9182. https://doi.org/10.1002/2013JD020720
  21. Pasteris D, McConnell JR, Edwards R, Isaksson E and Albert MR (2014) Acidity decline in Antarctic ice cores during the Little Ice Age linked to changes in atmospheric nitrate and sea salt concentrations. J. Geophys. Res. Atmos., 119, 5640–5652. https://doi.org/10.1002/2013JD020377
  22. Pettit EC, Whorton EN, Waddington ED and Sletten RS (2014) Influence of debris-rich basal ice on flow of a polar glacier. Journal of Glaciology, 60(223), 989-1006. https://doi.org/10.3189/2014JoG13J161
  23. Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H, Gkinis V, Guillevic M, Hoek WZ, Lowe JJ, Pedro JB, Popp T, Seierstad IK, Steffensen JP, Svensson AM, Vallelonga P, Vinther BM, Walker MJC, Wheatley JJ, Winstrup M (2014) A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews, 106, 14-28. https://doi.org/10.1016/j.quascirev.2014.09.007
  24. Schoenemann SW, Steig EJ, Ding Q, Markle BR and Schauer AJ (2014) Triple water-isotopologue record from WAIS Divide, Antarctica: controls on glacial-interglacial changes in 17Oexcess of precipitation. Journal of Geophysical Research Atmospheres, 119(14), 8741-8763. https://doi.org/10.1002/2014JD021770
  25. Seierstad IK, Abbott PM, Bigler M, Blunier T, Bourne AJ, Brook E, Buchardt SL, Buizert C, Clausen HB, Cook E, Dahl-Jensen D, Davies SM, Guillevic M, Johnsen SJ, Pedersen DS, Popp TJ, Rasmussen SO, Severinghaus JP, Svensson A, and Vinther BM (2014) Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quaternary Science Reviews, 106, 29-46. https://doi.org/10.1016/j.quascirev.2014.10.032
  26. Sigl M, McConnell JR, Toohey M, Curran M, Das SB, Edwards R, Isaksson E, Kawamura K, Kipfstuhl S, Kruger K, Layman L, Maselli O, Motizuki Y, Motoyama H, Pasteris DR and Severi M (2014) Insights from Antarctica on volcanic forcing during the Common Era. Nature Climate Change, 1–5. https://doi.org/10.1038/nclimate2293
  27. Sofen ED, Alexander B, Steig EJ, Thiemens MH, Kunasek SA, Amos HM, Schauer AJ, Hastings MG, Bautista J, Jackson TL, Vogel LE, McConnell JR, Pasteris DR and Saltzman ES (2014) WAIS Divide ice core suggests sustained changes in the atmospheric formation pathways of sulfate and nitrate since the 19th century in the extratropical Southern Hemisphere. Atmospheric Chemistry and Physics, 14, 5749-5769. https://doi.org/10.5194/acp-14-5749-2014
  28. Souney JM, Twickler MS, Hargreaves GM, Bencivengo BM, Kippenhan MJ, Johnson JA, Cravens ED, Neff PD, Nunn RM, Orsi AJ, Popp TJ, Rhoades JF, Vaughn BH, Voigt DE, Wong GJ and Taylor KC (2014) Core handling and processing for the WAIS Divide ice-core project. Annals of Glaciology, 55(68), 15-26. https://doi.org/10.3189/2014AoG68A008

2013

  1. Aartsen MG, Abbasi R, Abdou Y, Ackermann M, Adams J, Aguilar JA, Ahlers M, Altmann D, Auffenberg J, Bai X and Baker M (2013) South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy. Journal of Glaciology, 59(218), 1117-1128. https://doi.org/10.3189/2013JoG13J068
  2. Bauer S E, Bausch A, Nazarenko L, Tsigaridis K, Xu B, Edwards R, Bisiaux M and McConnell J (2013) Historic and future black carbon deposition on the three ice caps: Ice-core measurements and model simulations from 1850 to 2100. Journal of Geophysical Research Atmospheres, 118, 7948-7961. https://doi.org/10.1002/jgrd.50612
  3. Buizert C, Sowers T and Blunier T (2013) Assessment of diffusive isotopic fractionation in polar firn, and application to ice core trace gas records. Earth and Planetary Science Letters, 361, 110-119. https://doi.org/10.1016/j.epsl.2012.11.039
  4. Cole-Dai J, Ferris DG, Lanciki AL, Savarino J, Thiemens MH and McConnell JR (2013) Two likely stratospheric volcanic eruptions in the 1450s C.E. found in a bipolar, subannually dated 800 year ice core record. Journal of Geophysical Research Atmospheres, 118, 7459–7466. https://doi.org/10.1002/jgrd.50587
  5. Ehrenberg R (2013) Life under ice: Lake Vostok may harbor ingredients for a complex subglacial ecosystem. Science News, 184: 26–29. https://doi.org/10.1002/scin.5591840517
  6. Koffman BG, Kreutz KJ, Kurbatov AV and Dunbar NW (2013) Impact of known local and tropical volcanic eruptions of the past millennium on the WAIS Divide microparticle record. Geophysical Research Letters, 40(17), 4712–4716. https://doi.org/10.1002/grl.50822
  7. Lee YH, Lamarque JF, Flanner MG, Jiao C, Shindell DT, Berntsen T, Bisiaux MM, Cao J, Collins WJ, Curran M, Edwards R, Faluvegi G, Ghan S, Horowitz LW, McConnell JR, Ming J, Myhre G, Nagashima T, Naik V, Tumbold ST, Skeie RB, Sudo K, Takemura T, Thevenon F, Xu B and Yoon J-H (2013) Evaluation of preindustrial to present-day black carbon and its albedo forcing from ACCMIP (Atmospheric Chemistry and Climate Model Intercomparison Project). Atmospheric Chemistry and Physics, 13, 2607-2634. https://doi.org/10.5194/acp-13-2607-2013
  8. Marsh JJS, Boschi VL and Sleighter Rl (2013) Characterization of dissolved organic matter from a Greenland ice core by nanospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Journal of Glaciology, 59(214), 225-232. https://doi.org/10.3189/2013JoG12J061
  9. Mayewski PA, Maasch KA, Dixon D, Sneed SB, Oglesby R, Korotkikh E, Potocki M, Grigholm B, Kreutz K, Kurbatov AV, Spaulding N, Stager JC, Taylor KC, Steig EJ, White J, Bertler NAN, Goodwin I, Simoes JC, Jana R, Kraus S and Fastook J (2013) West Antarctica's sensitivity to natural and human‐forced climate change over the Holocene. Journal of Quaternary Science, 28(1), 40-48. https://doi.org/10.1002/jqs.2593
  10. Mitchell L, Brook E, Lee JE, Buizert C and Sowers T (2013) Constraints on the Late Holocene Anthropogenic Contribution to the Atmospheric Methane Budget. Science, 342(6161), 964–966. https://doi.org/10.1126/science.1238920
  11. Petaev MI, Huang S, Jacobsen SB, and Zindler A (2013) Large Pt anomaly in the Greenland ice core points to a cataclysm at the onset of Younger Dryas. PNAS, 110 (32), 12917-12920. https://doi.org/10.1073/pnas.1303924110
  12. Rogers SO, Shtarkman YM, Kocer ZA, Edgar R, Veerapaneni R and D'Elia T (2013) Ecology of Subglacial Lake Vostok (Antarctica), Based on Metagenomic/Metatranscriptomic Analyses of Accretion Ice. Biology, 2(2), 629-650. https://doi.org/10.3390/biology2020629
  13. Rhodes RH, Fain X, Stowasser C, Blunier T, Chappellaz J, McConnell JR, Romanini D, Mitchell LE and Brook EJ (2013) Continuous methane measurements from a late Holocene Greenland ice core: Atmospheric and in-situ signals. Earth and Planetary Science Letters, 368, 9-19. https://doi.org/10.1016/j.epsl.2013.02.034
  14. Shtarkman YM, Kocer ZA, Edgar R, Veerapaneni RS, D'Elia T, Morris PF and Rogers SO (2013) Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya. PLoS ONE, 8(7): e67221. https://doi.org/10.1371/journal.pone.0067221
  15. Sigl M, McConnell JR, Layman L, Maselli O, McGwire K, Pasteris D, Dahl-Jensen D, Steffensen JP, Vinther B, Edwards R, Mulvaney R and Kipfstuhl S (2013) A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. Journal of Geophysical Research, 118, 1151–1169. https://doi.org/10.1029/2012JD018603
  16. Steig EJ, Ding Q, White JWC, Kuttel M, Rupper SB, Neumann TA, Neff PD, Gallant AJE, Mayewski PA, Taylor KC, Hoffman G, Dixon D, Schoenemann SW, Markle BR, Fudge TJ, Schneider DP, Schauer AJ, Teel RP, Vaughn BH, Burgener L, Williams J and Korotkikh E (2013) Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nature Geoscience, 6, 372-375. https://doi.org/10.1038/ngeo1778
  17. Stillman DE, MacGregor JA, Grimm RE (2013) Electrical response of ammonium-rich water ice. Annals of Glaciology, 54(64), 21-26. https://doi.org/10.3189/2013AoG64A204
  18. Stillman DE, MacGregor JA, Grimm RE (2013) The role of acids in electrical conduction through ice. Journal of Geophysical Research: Earth Surface, 118 (1), 1–16. https://doi.org/10.1029/2012JF002603
  19. Verhulst KR, Aydin M and Saltzman ES (2013) Methyl chloride variability in the Taylor Dome ice core during the Holocene. Journal of Geophysical Research, 118(21), 12218-12228. https://doi.org/10.1002/2013JD020197
  20. WAIS Divide Project Members (2013) Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature, 500, 440–444. https://doi.org/10.1038/nature12376
  21. Woodruff TE, Welten KC, Caffee MW and Kunihiko Nishiizumi K (2013) Interlaboratory comparison of 10Be concentrations in two ice cores from Central West Antarctica. Nuclear Inst. and Methods in Physics Research, B, 294, 77-80. https://doi.org/10.1016/j.nimb.2012.08.033

2012

  1. Ahn J, Brook EJ, Mitchell L, Rosen J, McConnell JR, Taylor K, Etheridge D and Rubino M (2012) Atmospheric CO2 over the last 1000 years: A high‐resolution record from the West Antarctic Ice Sheet (WAIS) Divide ice core. Global Biogeochem. Cycles, 26, GB2027. https://doi.org/10.1029/2011GB004247
  2. Ahn J, Brook EJ, Schmittner A and Kreutz K (2012) Abrupt change in atmospheric CO2 during the last ice age. Geophysical Research Letters, 39(18). https://doi.org/10.1029/2012GL053018
  3. Barletta RE, Priscu JC, Mader HM, Jones WL and Roe CH (2012) Chemical analysis of ice vein microenvironments: II. Analysis of glacial samples from Greenland and Antarctica. Journal of Glaciology, 58(212), 1109-1118. https://doi.org/10.3189/2012JoG12J112
  4. Bisiaux MM, Edwards R, McConnell JR, Albert MR, Anschutz H, Neumann TA, Isaksson E and Penner JE (2012) Variability of black carbon deposition to the East Antarctic Plateau, 1800–2000 AD. Atmos. Chem. Phys., 12, 3799-3808. https://doi.org/10.5194/acp-12-3799-2012
  5. Bisiaux MM, Edwards R, McConnell JR, Curran MAJ, Van Ommen TD, Smith AM, Neumann TA, Pasteris DR, Penner JE and Taylor K (2012) Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850-2000 AD. Atmospheric Chemistry and Physics, 12, 4107–4115. https://doi.org/10.5194/acp-12-4107-2012
  6. Clark PU, Shakun JD, Baker PA, Bartlein PJ, Brewer S, Brook E, Carlson AE, Cheng H, Kaufman DS, Liu Z, Marchitto TM, Mix AC, Morrill C, Otto-Bliesner BL, Pahnke K, Russell JM, Whitlock C, Adkins JF, Blois JL, Clark J, Colman SM, Curry WB, Flower BP, He F, Johnson TC, Lynch-Stieglitz J, Markgraf V, McManus J, Mitrovica JX, Moreno PI, and Williams JW (2012) Global climate evolution during the last deglaciation. PNAS, 109(19), E1134-E1142. https://doi.org/10.1073/pnas.1116619109
  7. Küttel M, Steig EJ, Ding Q, Monaghan AJ and Battisti DS (2012) Seasonal climate information preserved in West Antarctic ice core water isotopes: relationships to temperature, large-scale circulation, and sea ice. Climate Dynamics, 39(7-8), 1841-1857. https://doi.org/10.1007/s00382-012-1460-7
  8. Neff PD, Steig EJ, Clark DH, McConnell JR, Pettit EC and Menounos B (2012) Ice-core net snow accumulation and seasonal snow chemistry at a temperate-glacier site: Mount Waddington, southwest British Columbia, Canada. Journal of Glaciology, 58(212), 1165-1175. https://doi.org/10.3189/2012JoG12J078
  9. Orsi AJ, Cornuelle BD and Severinghaus JP (2012) Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide. Geophysical Research Letters, 39(L09710). https://doi.org/10.1029/2012GL051260
  10. Price PB and Bay RC (2012) Marine bacteria in deep Arctic and Antarctic ice cores: a proxy for evolution in oceans over 300 million generations. Biogeosciences, 9, 3799-3815. https://doi.org/10.5194/bg-9-3799-2012
  11. Rhodes RH, Bertler NAN and Baker JA (2012) Little Ice Age climate and oceanic conditions of the Ross Sea, Antarctica from a coastal ice core record. Climate of the Past, 8, 1223-1238. https://doi.org/10.5194/cp-8-1223-2012

2011

  1. Aydin M, Verhulst KR, Saltzman ES, Battle MO, Montzka SA, Blake DR, Tang Q and Prather MJ (2011) Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air. Nature, 476, 198-201. https://doi.org/10.1038/nature10352
  2. Brook E and Severinghaus J (2011) Methane and megafauna. Nature Geoscience, 4, 271–272. https://doi.org/10.1038/ngeo1140
  3. Dunbar NW and Kurbatov AV (2011) Tephrochronology of the Siple Dome ice core, West Antarctica: Correlations and sources. Quat. Sci. Rev., 30(13-14), 1602-1614. https://doi.org/10.1016/j.quascirev.2011.03.015
  4. Fegyveresi JM, Alley RB, Spencer MK, Fitzpatrick JJ, Steig EJ, White JWC, McConnell JR and Taylor KC (2011) Late-Holocene climate evolution at the WAIS Divide site, West Antarctica: bubble number-density estimates. Journal of Glaciology, 57(204), 629–638. https://doi.org/10.3189/002214311797409677
  5. Ferris DG, Cole‐Dai J, Reyes AR, and Budner DM (2011) South Pole ice core record of explosive volcanic eruptions in the first and second millennia A.D. and evidence of a large eruption in the tropics around 535 A.D. Journal of Geophysical Research, 116, D17308, 1-11. https://doi.org/10.1029/2011JD015916
  6. Lamarque JF, McConnell JR, Shindell DT, Orlando JJ and Tyndall GS (2011) Understanding the drivers for the 20th century change of hydrogen peroxide in Antarctic ice-cores. Geophysical Research Letters, 38(L04810). https://doi.org/10.1029/2010GL045992
  7. McGwire KC, Taylor KC, Banta JR and McConnell JR (2011) Identifying Annual Peaks in Dielectric Profiles with a Selection Curve. Journal of Glaciology, 57(204), 763-769. https://doi.org/10.3189/002214311797409721
  8. Melton JR, Whiticar MJ and Eby P (2011) Stable carbon isotope ratio analyses on trace methane from ice samples. Chemical Geology, 288, 88–96. https://doi.org/10.1016/j.chemgeo.2011.03.003
  9. Mitchell LE, Brook EJ, Sowers T, McConnell JR and Taylor K (2011) Multidecadal variability of atmospheric methane, 1000–1800 C.E. Journal of Geophysical Research: Biogeosciences, 116(G2). https://doi.org/10.1029/2010JG001441
  10. Naftz DL, Schuster PF and Johnson CA (2011) A 50-year record of NOx and SO2 sources in precipitation in the Northern Rocky Mountains, USA. Geochemical Transactions, 12:4. https://doi.org/10.1186/1467-4866-12-4
  11. Obbard RW, Cassano T, Aho K, Troderman G and Baker I (2011) Using borehole logging and electron backscatter diffraction to orient an ice core from Upper Fremont Glacier, Wyoming, USA. Journal of Glaciology, 57(205), 832-840. https://doi.org/10.3189/002214311798043762
  12. Obbard RW, Sieg KE, Baker I, Meese D and Catania GA (2011) Microstructural evolution in the fine-grained region of the Siple Dome (Antarctica) ice core. Journal of Glaciology, 57(206), 1046-1056. https://doi.org/10.3189/002214311798843322
  13. Sofen ED, Alexander B and Kunasek SA (2011) The impact of anthropogenic emissions on atmospheric sulfate production pathways, oxidants, and ice core Δ17O(SO42-). Atmospheric Chemistry and Physics, 11, 3565-3578. https://doi.org/10.5194/acp-11-3565-20
  14. Yang WW and Ponce A (2011) Validation of a Clostridium endospore viability assay and analysis of Greenland ices and Atacama desert soils. Applied and Environmental Microbiology, 77(7), 2352–2358. https://doi.org/10.1128/AEM.01966-10

2010

  1. Aydin M, Montzka SA, Battle MO, Williams MB, De Bruyn WJ, Butler JH, Verhulst KR, Tatum C, Gun BK and Plotkin DA (2010) Post-coring entrapment of modern air in some shallow ice cores collected near the firn-ice transition: evidence from CFC-12 measurements in Antarctic firn air and ice cores. Atmospheric Chemistry and Physics, 10, 5135-5144. https://doi.org/10.5194/acp-10-5135-2010
  2. Bender ML, Burgess E, Alley RB, Barnett B, Clow GD (2010) On the nature of the dirty ice at the bottom of the GISP2 ice core. Earth Planetary Science Letters, 299, 466-473. https://doi.org/10.1016/j.epsl.2010.09.033
  3. Kobashi T, Severinghaus JP, Barnola J-M, Kawamura K, Carter T and Nakaegawa T (2010) Persistent multi-decadal Greenland temperature fluctuation through the last millennium. Climatic Change, 100(3), 733-756. https://doi.org/10.1007/s10584-009-9689-9
  4. Kunasek SA, Alexander B, Steig EJ, Sofen ED, Jackson TL, Thiemens MH, McConnell JR, Gleason DJ and Amos HM (2010) Sulfate sources and oxidation chemistry over the past 230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core. Journal of Geophysical Research, 115(D18313). https://doi.org/10.1029/2010JD013846
  5. McConnell JR (2010) New Directions: Historical black carbon and other ice core aerosol records in the Arctic for GCM evaluation. Atmospheric Environment, 44(21–22), 2665-2666. https://doi.org/10.1016/j.atmosenv.2010.04.004
  6. Price PB (2010) Microbial life in martian ice: A biotic origin of methane on Mars? Planetary and Space Science, 58(10), 1199-1206. https://doi.org/10.1016/j.pss.2010.04.013
  7. Sowers T (2010) Atmospheric methane isotope records covering the Holocene period. Quaternary Science Reviews, 29, 213-221. https://doi.org/10.1016/j.quascirev.2009.05.023
  8. Wadham JL, Tranter N, Skidmore M, Hodson AJ, Priscu J, Lyons WB, Sharp M, Wynn P and Jackson M (2010), Biogeochemical weathering under ice: Size matters. Global Biogeochem. Cycles, 24, GB3025. https://doi.org/10.1029/2009GB003688
  9. Wang Z, Chappellaz J, Park K and Mak JE (2010) Large Variations in Southern Hemisphere Biomass Burning During the Last 650 Years. Science, 330 (6011), 1663-1666. https://doi.org/10.1126/science.1197257
  10. Wang Z and Mak JE (2010) A new CF-IRMS system for quantifying stable isotopes of carbon monoxide from ice cores and small air samples. Atmos. Meas. Tech., 3, 1307-1317. https://doi.org/10.5194/amt-3-1307-2010

2009

  1. Ahn J, Brook EJ and Howell K (2009) A high-precision method for measurement of paleoatmospheric CO2 in small polar ice samples. Journal of Glaciology, 55(191), 499-506. doi:10.3189/002214309788816731
  2. Brook E (2009) Atmospheric carbon footprints, Nature Geoscience, 2, 170-172. doi:doi:10.1038/ngeo446
  3. Cole-Dai, Ferris D, Lanciki A, Savarino J, Baroni M, and Thiemens MH (2009) Cold decade (AD 1810 – 1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. Geophysical Research Letters, 36, L22703, 1-6. doi:10.1029/2009GL040882
  4. D'Elia T, Veerapaneni R, Theraisnathan V and Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia, 101(6), 751–763. doi:10.3852/08-184
  5. Grachev AM, Brook EJ, Severinghaus JP and Pisias NG (2009) Relative timing and variability of atmospheric methane and GISP2 oxygen isotopes between 68 and 86 ka. Global Biogeochemical Cycles, 23, GB2009. doi:10.1029/2008GB003330
  6. Liu Z, Otto-Bliesner BL, He F, Brady EC, Tomas R, Clark PU, Carlson AE, Lynch-Stieglitz J, Curry W, Brook E, Erickson D, Jacob R, Kutzbach J, Cheng J (2009) Transient Simulation of Last Deglaciation with a New Mechanism for Bølling-Allerød Warming, Science, 325(5938), 310-314. doi:10.1126/science.1171041
  7. Mischler JA, Sowers TA, Alley RB, Battle M, McConnell JR, Mitchell L, Popp T, Sofen E and Spencer MK (2009) Carbon and hydrogen isotopic composition of methane over the last 1000 years. Global Biogeochemical Cycles, 23(GB4024). doi:10.1029/2009GB003460
  8. Price PB, Rohde RA and Bay RC (2009) Fluxes of microbes, organic aerosols, dust, sea-salt Na ions, non-sea-salt Ca ions, and methanesulfonate onto Greenland and Antarctic ice. Biogeosciences, 6, 479-486. doi:10.5194/bg-6-479-2009
  9. Saltzman ES, Aydin M, Williams MB, Verhulst KR, and Gun B (2009) Methyl chloride in a deep ice core from Siple Dome, Antarctica, Geophys. Res. Lett., 36, L03822. doi:10.1029/2008GL036266
  10. Severinghaus JP, Beaudette R, Headly MA, Taylor K and Brook EJ (2009) Oxygen-18 of O2 records the impact of abrupt climate change on the terrestrial biosphere. Science, 324(5933), 1431-1434. doi:10.1126/science.1169473

2008

  1. Ahn J and Brook EJ (2008) Atmospheric CO2 and Climate on Millennial Time Scales During the Last Glacial Period, Science, 322 (5898), 83-85. doi:10.1126/science.1160832
  2. Ahn J, Headly M, Wahlen M, Brook EJ, Mayewski PA and Taylor KC (2008) CO2 diffusion in polar ice: observations from naturally formed CO2 spikes in the Siple Dome (Antarctica) ice core, Journal of Glaciology, 54(187), 685-695. doi:10.3189/002214308786570764
  3. Aydin M, Williams MB, Tatum C and Saltzman ES (2008) Carbonyl sulfide in air extracted from a South Pole ice core: a 2000 year record, Atmos. Chem. Phys., 8, 7533-7542. doi:10.5194/acp-8-7533-2008
  4. Banta JR, McConnell JR, Edwards R and Engelbrecht JP (2008) Delineation of carbonate dust, aluminous dust, and sea salt deposition in a Greenland glaciochemical array using positive matrix factorization, Geochem. Geophys. Geosyst., 9, Q07013. doi:10.1029/2007GC001908
  5. Banta JR, McConnell JR, Frey MF, Bales RC and Taylor K (2008) Spatial and temporal variability in snow accumulation at the West Antarctic Ice Sheet Divide over recent centuries, Journal of Geophysical Research, 113(D23102). doi:10.1029/2008JD010235
  6. Baroni M, Savarino J, Cole-Dai J, Rai VK and Thiemens MH (2008) Anomalous sulfur isotope compositions of volcanic sulfate over the last millennium in Antarctic ice cores, Journal of Geophysical Research Atmospheres, 113, D20112. doi:10.1029/2008JD010185
  7. Bender ML, Barnett B, Dreyfus G, Jouzel J, Porcelli D (2008) The contemporary degassing rate of 40Ar from the solid Earth. Proceedings of the National Academy of Sciences, 105 (24) 8232-8237. https://doi.org/10.1073/pnas.0711679105
  8. D'Elia T, Veerapaneni R and Rogers SO (2008) Isolation of Microbes from Lake Vostok Accretion Ice, Applied and Environmental Microbiology, 74(15), 4962-4965. doi:10.1128/AEM.02501-07
  9. Das SB and Alley RB (2008) Rise in frequency of surface melting at Siple Dome through the Holocene: Evidence for increasing marine influence on the climate of West Antarctica, Journal of Geophysical Research: Atmospheres, 113(D2). doi:10.1029/2007JD008790
  10. Kobashi T, Severinghaus JP and Barnola J-M (2008), 4±1.5°C abrupt warming 11,270 yr ago identified from trapped air in Greenland ice, Earth and Planetary Science Letters, 268, 397-407. doi:10.1016/j.epsl.2008.01.032
  11. Kobashi T, Severinghaus JP and Kawamura K (2008) Argon and nitrogen isotopes of trapped air in the GISP2 ice core during the Holocene epoch (0–11,500 B.P.): Methodology and implications for gas loss processes, Geochimica et Cosmochimica Acta, 72(19), 4675-4686. doi:10.1016/j.gca.2008.07.006
  12. McConnell JR and Edwards R (2008) Coal burning leaves toxic heavy metal legacy in the Arctic. PNAS, 105 (34), 12140-12144. doi:10.1073/pnas.0803564105
  13. McGwire KC, Hargreaves GM, Alley RB, Popp TJ, Reusch DB, Spencer MK and Taylor KC (2008) An integrated system for optical imaging of ice cores, Cold Regions Science and Technology, 53(2), 216-228. doi:10.1016/j.coldregions.2007.08.007
  14. McGwire KC, McConnel JR, Alley RB, Banta JR, Hargreaves GM and Taylor KC (2008) Dating annual layers of a shallow Antarctic ice core with an optical scanner, Journal of Glaciology, 54(188). doi:10.3189/002214308787780021
  15. Neumann TA, Conway H, Price SF, Waddington ED, Catania GA and Morse DL (2008) Holocene accumulation and ice sheet dynamics in central West Antarctica. Journal of Geophysical Research, 113(F02018). doi:10.1029/2007JF000764
  16. Rohde RA, Price PB, Bay RC and Bramall NE (2008) In situ microbial metabolism as a cause of gas anomalies in ice, Proceedings of the National Academy of Sciences, 105(25), 8667-8672. doi:10.1073/pnas.0803763105
  17. Saltzman ES, Aydin M, Tatum C and Williams MB (2008) 2,000-year record of atmospheric methyl bromide from a South Pole ice core, J. Geophys. Res., 113, D05304. doi:10.1029/2007JD008919
  18. Suwa M and Bender ML (2008) O2/N2 ratios of occluded air in the GISP2 ice core, J. Geophys. Res., 113, D11119. doi:10.1029/2007JD009589

2007

  1. Aciego SM, Cuffey KM, Kavanaugh JL, Morse DL, Severinghaus JP (2007) Pleistocene ice and paleo-strain rates at Taylor Glacier, Antarctica, Quaternary Research, 68, 3, 303-313. doi:10.1016/j.yqres.2007.07.013
  2. Ahn J and Brook EJ (2007) Atmospheric CO2 and climate from 65 to 30 ka B.P., Geophysical Research Letters, 34(10). doi:10.1029/2007GL029551
  3. Aydin M, Williams MB, and Saltzman ES (2007) Feasibility of reconstructing paleoatmospheric records of selected alkanes, methyl halides, and sulfur gases from Greenland ice cores, J. Geophys. Res., 112, D07312. doi:10.1029/2006JD008027
  4. Banta JR and McConnell JR (2007) Annual accumulation over recent centuries at four sites in central Greenland, Journal of Geophysical Research: Atmospheres, 112(D10). doi:10.1029/2006JD007887
  5. Gow AJ and Meese D (2007) Physical properties, crystalline textures and c-axis fabrics of the Siple Dome (Antarctica) ice core, Journal of Glaciology, 53(183), 573-584. doi:10.3189/002214307784409252
  6. Gow AJ and Meese DA (2007) The distribution and timing of tephra deposition at Siple Dome, Antarctica: possible climatic and rheologic implications, Journal of Glaciology, 53(183), 585-596. doi:10.3189/002214307784409270
  7. Grachev AM, Brook EJ and Severinghaus JP (2007) Abrupt changes in atmospheric methane at the MIS 5b–5a transition, Geophysical Research Letters, 34(20). doi:10.1029/2007GL029799
  8. Headly MA and Severinghaus JP (2007) A method to measure Kr/N2 ratios in air bubbles trapped in ice cores and its application in reconstructing past mean ocean temperature, Journal of Geophysical Research: Atmospheres, 112(D19). doi:10.1029/2006JD008317
  9. Hinkley T (2007) Lead (Pb) in old Antarctic ice: some from dust, some from other sources, Geophysical research letters, 34(8). doi:10.1029/2006GL028736
  10. Kobashi T, Severinghaus JP, Brook EJ, Barnola J-M, Grachev AM (2007) Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice, Quaternary Science Reviews, 26(9-10), 1212-1222. doi:10.1016/j.quascirev.2007.01.009
  11. MacGregor JA, Winebrenner DP, Conway H, Matsuoka K, Mayewski PA and Clow GD (2007) Modeling englacial radar attenuation at Siple Dome, West Antarctica, using ice chemistry and temperature data, Journal of Geophysical Research, 112, F03008. doi:10.1029/2006JF000717
  12. McConnell JR, Edwards R, Kok GL, Flanner MG, Zender CS, Saltzman ES, Banta JR, Pasteris DR, Carter MM, Kahl JDW (2007) 20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing, Science, 317(5843), 1381-1384. doi:10.1126/science.1144856
  13. Obbard R and Baker I (2007) The microstructure of meteoric ice from Vostok, Antarctica, Journal of Glaciology, 53(180), 41-62. doi:10.3189/172756507781833901
  14. Rohde RA and Price PB (2007) Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals, Proceedings of the National Academy of Sciences, 104(42), 16592-16597. doi:10.1073/pnas.0708183104
  15. Williams MB, Aydin M, Tatum C and Saltzman ES (2007) A 2000 year atmospheric history of methyl chloride from a South Pole ice core: Evidence for climate‐controlled variability, Geophysical research letters, 34(7). doi:10.1029/2006GL029142
  16. Yung PT, Shafaat HS, Connon SA and Ponce A (2007) Quantification of viable endospores from a Greenland ice core, FEMS microbiology ecology, 59(2), 300-306. doi:10.1111/j.1574-6941.2006.00218.x

2006

  1. Cecil LD, Green JR and Thompson LG eds., (2006) Earth paleoenvironments: records preserved in mid-and low-latitude glaciers (Vol. 9). Springer Science & Business Media
  2. Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Tsapin AI, Studinger M and Priscu JC (2006) Limnological conditions in subglacial Lake Vostok, Antarctica, Limnology and Oceanography, 51(6), 2485-2501. doi:10.4319/lo.2006.51.6.2485
  3. Frey MM, Bales RC and McConnell JR (2006) Climate sensitivity of the century-scale hydrogen peroxide (H2O2) record preserved in 23 ice cores from West Antarctica, Journal of Geophysical Research: Atmospheres, 111(D21301). doi:10.1029/2005JD006816
  4. Kurbatov AV, Zielinski GA, Dunbar NW, Mayewski PA, Meyerson EA, Sneed SB, and Taylor KC (2006) A 12,000 year record of explosive volcanism in the Siple Dome Ice Core, West Antarctica, J. Geophys. Res., 111, D12307. doi:10.1029/2005JD006072
  5. Obbard R, Baker I and Sieg K (2006) Using electron backscatter diffraction patterns to examine recrystallization in polar ice sheets, Journal of Glaciology, 52(179), 546-557. doi:10.3189/172756506781828458
  6. Saltzman ES, Dioumaeva I and Finley BD (2006) Glacial/interglacial variations in methanesulfonate (MSA) in the Siple Dome ice core, West Antarctica, Geophysical Research Letters, 33(11). doi:10.1029/2005GL025629
  7. Schaefer H, Whiticar MJ, Brook EJ, Petrenko VV, Ferretti DF and Severinghaus JP (2006) Ice Record of δ13C for Atmospheric CH4 Across the Younger Dryas-Preboreal Transition, Science, 313(5790), 1109-1112. doi:10.1126/science.1126562
  8. Shafaat HS and Ponce A (2006) Applications of a rapid endospore viability assay for monitoring UV inactivation and characterizing arctic ice cores, Applied and environmental microbiology, 72(10), 6808-6814. doi:10.1128/AEM.00255-06
  9. Tung HC, Price PB, Bramall NE and Vrdoljak G (2006) Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice, Astrobiology, 6(1), 69-86. doi:10.1089/ast.2006.6.69

2005

  1. Baker I, Iliescu D, Obbard R, Chang H, Bostick B, and Daghlian C (2005) Microstructural characterization of ice cores. Annals of Glaciology, 42, 441-444. https://doi.org/10.3189/172756405781812853
  2. Brook EJ, White JW, Schilla AS, Bender ML, Barnett B, Severinghaus JP, Taylor KC, Alley RB and Steig EJ (2005) Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last glacial period, Quaternary Science Reviews, 24(12), 1333-1343. doi:10.1016/j.quascirev.2005.02.002
  3. Christner BC, Mikucki JA, Foreman CM, Denson J and Priscu JC (2005) Glacial ice cores: a model system for developing extraterrestrial decontamination protocols, Icarus, 174(2), 572-584. doi:10.1016/j.icarus.2004.10.027
  4. Das SB and Alley RB (2005) Characterization and formation of melt layers in polar snow: observations and experiments from West Antarctica, Journal of Glaciology, 51(173), 307-312. doi:10.3189/172756505781829395
  5. DiPrinzio CL, Wilen LA, Alley RB, Fitzpatrick JJ, Spencer MK and Gow AJ (2005) Fabric and texture at Siple Dome, Antarctica, Journal of Glaciology, 51(173), 281-290. doi:10.3189/172756505781829359
  6. Hastings MG, Sigman DM and Steig EJ (2005) Glacial/interglacial changes in the isotopes of nitrate from the Greenland Ice Sheet Project 2 (GISP2) ice core, Global biogeochemical cycles, 19(4). doi:10.1029/2005GB002502
  7. Kaspari S, Dixon D, Sneed S, and Handley M (2005) Sources and transport pathways of marine aerosol species into West Antarctica, Annals of Glaciology, 41, 1-9. doi:10.3189/172756405781813221
  8. Kellogg DE and Kellogg TB (2005) Frozen in time: The diatom record in ice cores from remote drilling sites on the Antarctic ice sheets (pp. 69-93). Princeton University Press: Princeton, NJ, USA
  9. Lal D, Jull AT, Pollard D and Vacher L (2005) Evidence for large century time-scale changes in solar activity in the past 32 Kyr, based on in-situ cosmogenic 14 C in ice at Summit, Greenland, Earth and Planetary Science Letters, 234(3), 335-349. doi:10.1016/j.epsl.2005.02.011
  10. Steig EJ, Mayewski PA, Dixon DA, Kaspari SD, Frey MM, Schneider DP, Arcone SA, Hamilton GS, Spikes V, Albert M and Meese D (2005) High-resolution ice cores from US ITASE (West Antarctica): Development and validation of chronologies and determination of precision and accuracy, Annals of Glaciology, 41(1), 77-84. doi:10.3189/172756405781813311
  11. Tung HC, Bramall NE and Price PB (2005) Microbial origin of excess methane in glacial ice and implications for life on Mars, Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18292-18296. doi:10.1073/pnas.0507601102

2004

  1. Ahn J, Wahlen M, Deck BL, Brook EJ, Mayewski PA, Taylor KC and White JW (2004) A record of atmospheric CO2 during the last 40,000 years from the Siple Dome, Antarctica ice core, Journal of Geophysical Research: Atmospheres, 109(D13). doi:10.1029/2003JD004415
  2. Alexander B, Savarino J, Kreutz KJ and Thiemens MH (2004) Impact of preindustrial biomass‐burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen, Journal of Geophysical Research: Atmospheres, 109(D8). doi:10.1029/2003JD004218
  3. Aydin M, Saltzman ES, De Bruyn WJ, Montzka SA, Butler JH, and Battle M (2004) Atmospheric variability of methyl chloride during the last 300 years from an Antarctic ice core and firn air, Geophys. Res. Lett., 31, L02109. doi:10.1029/2003GL018750
  4. Montzka SA, Aydin M, Battle M, Butler JH, Saltzman ES, Hall BD, Clarke AD, Mondeel D, and Elkins JW (2004) A 350-year atmospheric history for carbonyl sulfide inferred from Antarctic firn air and air trapped in ice, J. Geophys. Res., 109, D22302. doi:10.1029/2004JD004686
  5. Pruett LE, Kreutz KJ, Wadleigh M, Mayewski PA and Kurbatov A (2004) Sulfur isotopic measurements from a West Antarctic ice core: implications for sulfate source and transport, Annals of Glaciology, 39(1), 161-168. doi:10.3189/172756404781814339
  6. Saltzman ES, Aydin M, De Bruyn WJ, King DB, and Yvon-Lewis SA (2004) Methyl bromide in preindustrial air: Measurements from an Antarctic ice core, J. Geophys. Res., 109, D05301. doi:10.1029/2003JD004157
  7. Schuster PF, Naftz DL, Cecil LD and Green JR (2004) Evidence of Abrupt Climate Change and the Development of an Historic Mercury Deposition Record Using Chronological Refinement of Ice Cores at Upper Fremont Glacier, Earth Paleoenvironments: Records Preserved in Mid-and Low-Latitude Glaciers, Springer Netherlands, 181-216. doi:10.1007/1-4020-2146-1_10
  8. Taylor K and Alley R (2004) Two-dimensional electrical stratigraphy of the Siple Dome (Antarctica) ice core, Journal of Glaciology, 50(169), 231-235. doi:10.3189/172756504781830033
  9. Taylor KC, Alley RB, Meese DA, Spencer MK, Brook EJ, Dunbar NW, Finkel RC, Gow AJ, Kurbatov AV, Lamorey GW and Mayewski PA (2004) Dating the Siple Dome (Antarctica) ice core by manual and computer interpretation of annual layering, Journal of Glaciology, 50(170), 453-461. doi:10.3189/172756504781829864
  10. Taylor KC, White JWC, Severinghaus JP, Brook EJ, Mayewski PA, Alley RB, Steig EJ, Spencer MK, Meyerson E, Meese DA and Lamorey GW (2004) Abrupt climate change around 22ka on the Siple Coast of Antarctica, Quaternary Science Reviews, 23(1), 7-15. doi:10.1016/j.quascirev.2003.09.004

2003

  1. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke Jr. RA, Pierrehumbert RT, Rhines PB, TStocker TF, Talley LD and Wallace JM (2003) Abrupt climate change, Science, 299(5615), 2005-2010. doi:10.1126/science.1081056
  2. Baker I, Cullen D and Iliescu D (2003) The microstructural location of impurities in ice. Canadian Journal of Physics, 81(1-2), 1-9. https://doi.org/10.1139/p03-030
  3. Budner D and Cole‐Dai J (2003) The number and magnitude of large explosive volcanic eruptions between 904 and 1865 AD: Quantitative evidence from a new South Pole ice core, Volcanism and the Earth's Atmosphere, 165-176. doi:10.1029/139GM10
  4. Dunbar NW, Zielinski GA, and Voisin DT (2003) Tephra layers in the Siple Dome and Taylor Dome ice cores, Antarctica: Sources and correlations, J. Geophys. Res., 108(B8), 2374. doi:10.1029/2002JB002056
  5. Obbard R, Iliescu D, Cullen D, Chang J and Baker I (2003) SEM/EDS comparison of polar and seasonal temperate ice, Microscopy Research and Technique, 62(1), 49-61. doi:10.1002/jemt.10381
  6. Savarino J, Bekki S, Cole‐Dai J and Thiemens MH (2003) Evidence from sulfate mass independent oxygen isotopic compositions of dramatic changes in atmospheric oxidation following massive volcanic eruptions, Journal of Geophysical Research: Atmospheres, 108(D21). doi:10.1029/2003JD003737
  7. Savarino J, Romero A, Cole‐Dai J, Bekki S and Thiemens MH (2003) UV induced mass‐independent sulfur isotope fractionation in stratospheric volcanic sulfate, Geophysical Research Letters, 30(21). doi:10.1029/2003GL018134
  8. Severinghaus JP, Grachev A, Luz B and Caillon N (2003) A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica, Geochimica et Cosmochimica Acta, 67(3), 325-343. doi:10.1016/S0016-7037(02)00965-1
  9. Sowers T, Alley RB and JJubenville J (2003) Ice core records of atmospheric N2O covering the last 106,000 years, Science, 301(5635), 945-948. doi:10.1126/science.1085293
  10. Voigt DE, Alley RB, Anandakrishnan S and Spencer MK (2003) Ice-core insights into the flow and shut-down of Ice Stream C, West Antarctica, Annals of Glaciology, 37(1), 123-128. doi:10.3189/172756403781815465
  11. Wilen LA, Diprinzio CL, Alley RB and Azuma N (2003) Development, principles, and applications of automated ice fabric analyzers, Microscopy research and technique, 62(1), 2-18. doi:10.1002/jemt.10380

2002

  1. Aydin M, De Bruyn WJ, and Saltzman ES (2002) Preindustrial atmospheric carbonyl sulfide (OCS) from an Antarctic ice core, Geophys. Res. Lett., 29(9). doi:10.1029/2002GL014796
  2. Baker I and Cullen D (2002) The structure and chemistry of 94 m Greenland Ice Sheet Project 2 ice, Annals of Glaciology, 35(1), 224-230. doi:10.3189/172756402781816627
  3. Hamilton GS (2002) Mass balance and accumulation rate across Siple Dome, West Antarctica, Annals of Glaciology, 35(1), 102-106. doi:10.3189/172756402781816609
  4. Hansen DP and Wilen LA (2002) Performance and applications of an automated c-axis ice-fabric analyzer, Journal of Glaciology, 48(160), 159-170. doi:10.3189/172756502781831566
  5. McConnell JR, Lamorey GW, Lambert SW and Taylor KC (2002) Continuous ice-core chemical analyses using inductively coupled plasma mass spectrometry, Environmental science & technology, 36(1), 7-11. doi:10.1021/es011088z
  6. Meeker LD and Mayewski PA (2002) A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia, The Holocene, 12(3), 257-266. doi:10.1191/0959683602hl542ft
  7. Schuster PF, Krabbenhoft DP, Naftz DL, Cecil LD, Olson ML, Dewild JF, Susong DD, Green JR and Abbott ML (2002) Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources, Environmental science & technology, 36(11), 2303-2310. doi:10.1021/es0157503

2001

  1. Alley RB, Anandakrishnan S and Jung P (2001) Stochastic resonance in the North Atlantic, Paleoceanography, 16(2), 190–198. doi:10.1029/2000PA000518
  2. Blunier T and Brook EJ (2001) Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period, Science, 291(5501), 109-12. doi:10.1126/science.291.5501.109
  3. Caillon N, Severinghaus JP, Barnola JM, Chappellaz J, Jouzel J and Parrenin F (2001) Estimation of temperature change and of gas age-ice age difference, 108 kyr B.P., at Vostok, Antarctica, Journal of Geophysical Research, 106(D23), 31893-31901. doi:10.1029/2001JD900145
  4. Christner BC, Mosley‐Thompson E, Thompson LG and Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice, Environmental Microbiology, 3(9), 570-577. doi:10.1046/j.1462-2920.2001.00226.x
  5. Cullen D and Baker I (2001) Observation of impurities in ice. Microscopy research and technique, 55(3), 198-207. https://doi.org/10.1002/jemt.10000
  6. McCracken KG, Dreschhoff GAM, Zeller EJ, Smart DF and Shea MA (2001) Solar cosmic ray events for the period 1561–1994: 1. Identification in polar ice, 1561-1950, Journal of Geophysical Research: Space Physics, 106(A10), 21585-21598. doi:10.1029/2000JA000237

2000

  1. Alley RB (2000) Ice-core evidence of abrupt climate changes, Proceedings of the National Academy of Sciences, 97(4), 1331-1334. doi:10.1073/pnas.97.4.1331
  2. Alley RB (2000) The Younger Dryas cold interval as viewed from central Greenland, Quaternary science reviews, 19(1), 213-226. doi:10.1016/S0277-3791(99)00062-1
  3. Brook EJ, Harder S, Severinghaus J, Steig EJ, and Sucher CM (2000) On the origin and timing of rapid changes in atmospheric methane during the Last Glacial Period, Global Biogeochem. Cycles, 14(2), 559-572. doi:10.1029/1999GB001182
  4. Cullen D and Baker I (2000) The chemistry of grain boundaries in Greenland ice. Journal of Glaciology, 46(155), 703-706. https://doi.org/10.3189/S0022143000212756
  5. Kreutz KJ, Mayewski PA, Meeker LD, Twickler MS and Whitlow SI (2000) The effect of spatial and temporal accumulation rate variability in West Antarctica on soluble ion deposition, Geophysical Research Letters, 27(16), 2517. doi:10.1029/2000GL011499
  6. Kreutz KJ, Mayewski PA, Pittalwala II, Meeker LD, Twickler MS, and Whitlow SI (2000) Sea level pressure variability in the Amundsen Sea region inferred from a West Antarctic glaciochemical record, J. Geophys. Res., 105(D3), 4047–4059. doi:10.1029/1999JD901069
  7. Schuster PF, White DE, Naftz DL and Cecil LD (2000) Chronological refinement of an ice core record at Upper Fremont Glacier in south central North America, Journal of Geophysical Research: Atmospheres, 105(D4), 4657-4666. doi:10.1029/1999JD901095
  8. Steig EJ, Morse DL, Waddington ED, Stuiver M, Grootes PM, Mayewski PA, Twickler MS and Whitlow SI (2000) Wisconsinan and Holocene Climate History from an Ice Core at Taylor Dome, Western Ross Embayment, Antarctica, Geografiska Annaler: Series A, Physical Geography, 82, 213–235. doi:10.1111/j.0435-3676.2000.00122.x
  9. Wilen LA (2000) A new technique for ice-fabric analysis, Journal of Glaciology, 46(152), 129-139. doi:10.3189/172756500781833205
  10. Zielinski GA (2000) Use of paleo-records in determining variability within the volcanism–climate system, Quaternary Science Reviews, 19(1-5), 417-438. doi:10.1016/S0277-3791(99)00073-6.

1999

  1. Alley RB, Agustsdottir AM and Fawcett PJ (1999) Ice‐core evidence of late‐Holocene reduction in North Atlantic ocean heat transport. Mechanisms of global climate change at millennial time scales, 301-312. doi:10.1029/GM112p0301
  2. Alley RB, Mayewski PA and Saltzman ES (1999) Increasing North Atlantic climate variability recorded in a central Greenland ice core, Polar Geography, 23(2), 119-131. doi:10.1080/10889379909377669
  3. Castello JD, Rogers SO, Starmer WT, Catranis CM, Ma L, Bachand GD, Zhao Y and Smith JE (1999) Detection of tomato mosaic tobamovirus RNA in ancient glacial ice, Polar Biology, 22(3), 207-212. doi:10.1007/s003000050411
  4. Clark PU, Alley RB and Pollard D (1999) Northern hemisphere ice-sheet influences on global climate change, Science, 286(5442), 1103-1111. doi:10.1126/science.286.5442.1104
  5. Karl DM, Bird DF, Björkman K, Houlihan T, Shackelford R and Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica, Science, 286(5447), 2144-2147. doi:10.1126/science.286.5447.2144
  6. Kreutz KJ, Mayewski PA, Twickler MS, Whitlow SI, White JWC, Shuman CA, Raymond CF, Conway H, McConnell JR (1999) Seasonal variations of glaciochemical, isotopic and stratigraphic properties in Siple Dome (Antarctica) surface snow, Annals of Glaciology, 29, 38-44. doi:10.3189/172756499781821193
  7. Lorrain, RD, Fitzsimons SJ, Vandergoes MJ and Stievenard M (1999) Ice composition evidence for the formation of basal ice from lake water beneath a cold-based Antarctic glacier, Annals of Glaciology, 28(1), 277-281. doi:10.3189/172756499781822011
  8. Ma L, Catranis CM, Starmer WT and Rogers SO (1999) Revival and characterization of fungi from ancient polar ice, Mycologist, 13(2), 70-73. doi:10.1016/S0269-915X(99)80012-3
  9. Severinghaus JP and Brook EJ (1999) Abrupt Climate Change at the End of the Last Glacial Period Inferred from Trapped Air in Polar Ice, Science, 286(5441), 930-934. doi:10.1126/science.286.5441.930
  10. Shea MA, Smart DF and Dreschhoff GAM (1999) Identification of major proton fluence events from nitrates in polar ice cores, Radiation measurements, 30(3), 309-316. doi:10.1016/S1350-4487(99)00057-8

1998

  1. Cecil LD, Green JR, Vogt S, Michel R and Cottrell G (1998) Isotopic composition of ice cores and meltwater from Upper Fremont Glacier and Galena Creek rock glacier, Wyoming, Geografiska Annaler: Series A, Physical Geography, 80(3‐4), 287-292. doi:10.1111/j.0435-3676.1998.00044.x
  2. Dreschhoff G and Zeller EJ (1998) Ultra-high resolution nitrate in polar ice as indicator of past solar activity. In Solar Electromagnetic Radiation Study for Solar Cycle 22 (pp. 365-374). Springer Netherlands
  3. Severinghaus JP, Sowers T, Brook EJ, Alley RB and Bender ML (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice, Nature, 391(6663), 141-146. doi:10.1038/34346
  4. Steig EJ, Brook EJ, White JWC, Sucher CM, Bender ML, Lehman SJ, Morse DL, Waddington ED, Clow GD (1998) Synchronous climate changes in Antarctica and the North Atlantic, Science, 282(5386), 92-95. doi:10.1126/science.282.5386.92
  5. Steig EJ, Fitzpatrick JJ, Potter Jr N and Clark DH (1998) The geochemical record in rock glaciers, Geografiska Annaler: Series A, Physical Geography, 80(3‐4), 277-286. doi:10.1111/j.0435-3676.1998.00043.x

1997

  1. Alley RB, Gow AJ, Meese DA, Fitzpatrick JJ, Waddington ET and Bolzan JF (1997) Grain‐scale processes, folding, and stratigraphic disturbance in the GISP2 ice core, Journal of Geophysical Research: Oceans, 102(C12), 26819-26830. doi:10.1029/96JC03836
  2. Alley RB, Shuman CA, Meese DA, Gow AJ, Taylor KC, Cuffey KM, Fitzpatrick JJ, Grootes PM, Zielinski GA, Ram M, Spinelli G and Elder B (1997) Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application, Journal of Geophysial Research: Oceans, 102(C12), 26367–26381. doi:10.1029/96JC03837
  3. Barlow LK, Rogers JC, Serreze MC, and Barry RG (1997) Aspects of climate variability in the North Atlantic sector: Discussion and relation to the Greenland Ice Sheet Project 2 high-resolution isotopic signal, J. Geophys. Res., 102(C12), 26333–26344. doi:10.1029/96JC02401
  4. Biscaye PE, Grousset FE, Revel M, Van der Gaast S, Zielinski GA, Vaars A, and Kukla G (1997) Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland, J. Geophys. Res., 102(C12), 26765–26781. doi:10.1029/97JC01249
  5. Cecil LD and Vogt S (1997) Identification of bomb-produced chlorine-36 in mid-latitude glacial ice of North America, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 123(1-4), 287-289. doi:10.1016/S0168-583X(96)00717-3
  6. Chappellaz J, Brook E, Blunier T, and Malaizé B (1997) CH4 and δ18O of O2 records from Antarctic and Greenland ice: A clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice cores, J. Geophys. Res., 102(C12), 26547–26557. doi:10.1029/97JC00164
  7. Cuffey KM, and Clow GD (1997) Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition, J. Geophys. Res., 102(C12), 26383–26396. doi:10.1029/96JC03981
  8. Finkel RC, and Nishiizumi K (1997) Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3–40 ka, J. Geophys. Res., 102(C12), 26699–26706. doi:10.1029/97JC01282
  9. Gow AJ, Meese DA, Alley RB, Fitzpatrick JJ, Anandakrishnan S, Woods GA and Elder BC (1997) Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: A review, Journal of Geophysical Research: Oceans, 102(C12), 26559-26575. doi:10.1029/97JC00165
  10. Hammer C, Mayewski PA, Peel D, and Stuiver M (1997), Preface [to special section on Greenland Summit Ice Cores], J. Geophys. Res., 102( C12), 26315-26316. https://doi.org/10.1029/97JC02835
  11. Hvidberg CS, Dahl-Jensen D, and Waddington ED (1997) Ice flow between the Greenland Ice Core Project and Greenland Ice Sheet Project 2 boreholes in central Greenland, J. Geophys. Res., 102( C12), 26851-26859. https://doi.org/10.1029/97JC00268
  12. Lal D, Jull AJT, Burr GS, and Donahue DJ (1997) Measurements of in situ 14C concentrations in Greenland Ice Sheet Project 2 ice covering a 17-kyr time span: Implications to ice flow dynamics, J. Geophys. Res., 102(C12), 26505–26510. doi:10.1029/96JC02224
  13. Matsumoto A and Hinkley TK (1997) Determination of lead, cadmium, indium, thallium and silver in ancient ices from Antarctica by isotope dilution-thermal ionization mass spectrometry, Geochemical Journal, 31(3), 175-181. doi:10.2343/geochemj.31.175
  14. Mayewski PA, Meeker LD, Twickler MS, Whitlow S, Yang Q, Lyons WB, and Prentice M (1997) Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series, J. Geophys. Res., 102(C12), 26345–26366. doi:10.1029/96JC03365
  15. Meeker LD, Mayewski PA, Twickler MS, Whitlow SI, and Meese D (1997) A 110,000-year history of change in continental biogenic emissions and related atmospheric circulation inferred from the Greenland Ice Sheet Project Ice Core, J. Geophys. Res., 102(C12), 26489–26504. doi:10.1029/97JC01492
  16. Meese DA, Gow AJ, Alley RB, Zielinski GA, Grootes PM, Ram M, Taylor KC, Mayewski PA and Bolzan JF (1997) The Greenland Ice Sheet Project 2 depth‐age scale: Methods and results, Journal of Geophysical Research: Oceans, 102(C12), 26411-26423. doi:10.1029/97JC00269
  17. Ram M, and Koenig G (1997) Continuous dust concentration profile of pre-Holocene ice from the Greenland Ice Sheet Project 2 ice core: Dust stadials, interstadials, and the Eemian, J. Geophys. Res., 102(C12), 26641–26648. doi:10.1029/96JC03548
  18. Saltzman ES, Whung P-Y, and Mayewski PA (1997) Methanesulfonate in the Greenland Ice Sheet Project 2 Ice Core, J. Geophys. Res., 102(C12), 26649–26657. doi:10.1029/97JC01377
  19. Shuman CA, Alley RB, Fahnestock MA, Fawcett PJ, Bindschadler RA, White JWC, Grootes PM, Anandakrishnan S, and Stearns CR (1997) Detection and monitoring of stratigraphic markers and temperature trends at the Greenland Ice Sheet Project 2 using passive-microwave remote-sensing data, J. Geophys. Res., 102( C12), 26877-26886. https://doi.org/10.1029/96JC02323
  20. Smith HJ, Wahlen M, Mastroianni D, Taylor K, and Mayewski P (1997) The CO2 concentration of air trapped in Greenland Ice Sheet Project 2 ice formed during periods of rapid climate change, J. Geophys. Res., 102(C12), 26577–26582. doi:10.1029/97JC00163
  21. Sowers T, Brook E, Etheridge D, Blunier T, Fuchs A, Leuenberger M, Chappellaz J, Barnola JM, Wahlen M, Deck B, Weyhenmeyer C (1997) An interlaboratory comparison of techniques for extracting and analyzing trapped gases in ice cores, J. Geophys. Res., 102(C12), 26527–26538. doi:10.1029/97JC00633
  22. Taylor KC, Alley RB, Lamorey GW, and Mayewski P (1997) Electrical measurements on the Greenland Ice Sheet Project 2 Core, J. Geophys. Res., 102(C12), 26511–26517. doi:10.1029/96JC02500
  23. Taylor KC, Mayewski PA, Alley RB, Brook EJ, Gow AJ, Grootes PM, Meese DA, Saltzman ES, Severinghaus JP, Twickler MS, White JWC, Whitlow S, Zielinski GA (1997) The Holocene-Younger Dryas Transition Recorded at Summit, Greenland, Science, 278(5339), 825-827. doi:10.1126/science.278.5339.825
  24. White JWC, Barlow LK, Fisher D, Grootes P, Jouzel J, Johnsen SJ, Stuiver M, and Clausen H (1997) The climate signal in the stable isotopes of snow from Summit, Greenland: Results of comparisons with modern climate observations, J. Geophys. Res., 102(C12), 26425–26439. doi:10.1029/97JC00162
  25. Yiou R, Fuhrer K, Meeker LD, Jouzel J, Johnsen S, and Mayewski PA (1997) Paleoclimatic variability inferred from the spectral analysis of Greenland and Antarctic ice-core data, J. Geophys. Res., 102(C12), 26441–26454. doi:10.1029/97JC00158
  26. Zielinski GA, Dibb JE, Yang Q, Mayewski PA, Whitlow S, Twickler MS, and Germani MS (1997) Assessment of the record of the 1982 El Chichón eruption as preserved in Greenland snow, J. Geophys. Res., 102, 30031–30045. doi:10.1029/97JD01574
  27. Zielinski GA, Mayewski PA, Meeker LD, Grönvold K, Germani MS, Whitlow S, Twickler MS, and Taylor K (1997) Volcanic aerosol records and tephrochronology of the Summit, Greenland, ice cores, J. Geophys. Res., 102(C12), 26625–26640. doi:10.1029/96JC03547

1996

  1. Alley RB and Woods GA (1996) Impurity influence on normal grain growth in the GISP2 ice core, Greenland, Journal of Glaciology, 42(141), 255-260. doi:10.3189/S0022143000004111
  2. Brook EJ, Sowers T, and Orchardo J (1996) Rapid Variations in Atmospheric Methane Concentration During the Past 110,000 Years, Science, 273(5278), 1087-1091. doi:10.1126/science.273.5278.1087
  3. Gow AJ and Meese DA (1996) Nature of basal debris in the GISP2 and Byrd ice cores and its relevance to bed processes, Annals of Glaciology, 22(1), 134-140. doi:10.3198/1996AoG22-1-134-140
  4. Mayewski PA, Twickler MS, Whitlow SI, Meeker LD, Yang Q, Thomas J, Kreutz K, Grootes PM, Morse DL, Steig EJ, Waddington ED, Saltzman ES, Whung P-Y, and Taylor KC (1996) Climate Change During the Last Deglaciation in Antarctica, Science, 272(5268),1636-1638.
  5. Zielinski GA, Mayewski PA, Meeker LD, Whitlow S, Twickler MS (1996) A 110,000-Yr Record of Explosive Volcanism from the GISP2 (Greenland) Ice Core, Quaternary Research, 45(2), 109-118. doi:10.1006/qres.1996.0013
  6. Zielinski GA, Mayewski PA, Meeker LD, Whitlow S, Twickler MS, and Taylor K (1996) Potential atmospheric impact of the Toba mega-eruption 71,000 years ago, Geophys. Res. Lett., 23(8), 837–840. doi:10.1029/96GL00706

1995

  1. Alley RB and Anandakrishnan S (1995) Variations in melt-layer frequency in the GISP2 ice core: implications for Holocene summer temperatures in central Greenland, Annals of Glaciology, 21(1), 64-70. doi:10.3189/S0260305500015615
  2. Alley RB, Gow AJ, Johnsen SJ, Kipfstuhl J, Meese DA and Thorsteinsson Th (1995) Comparison of deep ice cores, Nature, 373(6513), 393-394.
  3. Alley RB, Finkel RC, Nishiizumi K, Anandakrishnan S, Shuman CA, Mershon G, Zielinski GA and Mayewski PA (1995) Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: model-based estimates, Journal of Glaciology, 41(139), 503-514. doi:10.3189/S0022143000034845
  4. Cuffey KM, Clow GD, Alley RB, Stuiver M, Waddington ED and Saltus RW (1995) Large Arctic Temperature Change at the Wisconsin-Holocene Glacial Transition, Science 270, 455-458. doi:10.1126/science.270.5235.455
  5. Kapsner WR, Alley RB, Shuman CA, Anandakrishnan S and Grootes PM (1995) Dominant control of atmospheric circulation on snow accumulation in central Greenland, Nature, 373, 52-54. doi:10.1038/373052a0
  6. Mayewski PA, Lyons WB, Zielinski G, Twickler M, Whitlow S, Dibb J, Grootes P, Taylor K, Whung P-Y, Fosberry L, Wake C, and Welch K (1995) An Ice-Core-Based, Late Holocene History for the Transantarctic Mountains, Antarctica, in Contributions to Antarctic Research IV (eds D. H. Elliot and G. L. Blaisdell), American Geophysical Union, Washington, D. C.. doi:10.1002/9781118668207.ch4
  7. O’Brien SR, Mayewski PA, Meeker LD, Meese DA, Twickler MS, Whitlow SI (1995) Complexity of Holocene Climate as Reconstructed from a Greenland Ice Core, Science, 270(5244), 1962-1964. doi:10.1126/science.270.5244.1962
  8. Zielinski GA, Germani MS, Larsen G, Baillie MGL, Whitlow S, Twickler MS, and Taylor K (1995) Evidence of the Eldgia (Iceland) eruption in the GISP2 Greenland ice core: Relationship to eruption processes and climate conditions in the tenth century, Holocene, 5, 129–140.