Photo of the main archive freezer at NICL

About NICL

Overview

The U.S. National Ice Core Laboratory (NICL) is a facility for storing, curating, and studying meteoric ice cores recovered from the glaciated regions of the world. It provides scientists with the capability to conduct examinations and measurements on ice cores, and it preserves the integrity of these ice cores in a long-term repository for current and future investigations.

The ice cores are recovered and studied for a variety of scientific investigations, most of which focus on the reconstruction of past climate states of the Earth. By investigating past climate fluctuations, scientists hope to be able to understand the mechanisms by which climate change is accomplished, and in so doing, they hope to develop predictive capabilities for future climate change.

NICL is funded by the National Science Foundation (NSF) Division of Polar Programs and operated by the U.S. Geological Survey (USGS). Scientific management is provided by the University of New Hampshire.


 

Physical Facility

NICL was established in 1993 and is located at the Denver Federal Center in Lakewood, Colorado. NICL is funded by the NSF. NICL is housed administratively within the USGS, Core Science Systems Mission Area, which is responsible for all operational aspects of the facility.

The facility's most important responsibility is for the safe and secure storage and curation of ice cores that are collected primarily by NSF-sponsored projects. The laboratory also provides the opportunity for scientists to examine ice cores without having to travel to remote field sites. The main archive freezer is 55,000 cubic feet in size and is held at a temperature of -36°C. A second room for examination of ice cores, held at -24°C, is 12,000 cubic feet in size and is contiguous with the archive area. There is also a Class-100 HEPA-filtered, cold clean room. NICL also maintains space outside the freezer facility for material fabrication, storage, changing areas, offices, and visiting scientist workspace.

NICL currently stores over 19,000 meters of ice core collected from various locations in Antarctica, Greenland, and North America.


 

Science Management Office

Scientific management of NICL is provided by the NICL-Science Management Office (NICL-SMO) located at the Institute for the Study of Earth, Oceans and Space, at the University of New Hampshire. NICL-SMO oversees the scientific operations and activities at NICL, and serves as the primary point of contact for scientists interested in access to ice cores stored at NICL and/or use of the NICL facility.


 

Storage & Curation

NICL's most important responsibility is for the safe and secure storage and curation of ice cores that are collected primarily by National Science Foundation sponsored projects. NICL currently stores over 19,000 meters of ice core collected from various locations in Antarctica, Greenland, and North America. NICL's main archive freezer is 55,000 cubic feet in size and is held at a temperature of -36°C.

When a shipment of new ice arrives, the insulated boxes carrying the cores are quickly unloaded into the main archive freezer. Once the new ice has come to thermal equilibrium with its new surroundings, it is carefully unpacked, organized, racked and inspected. After racking, the tubes are checked into NICL's inventory system.

A refrigerator mechanic attends to the refrigeration unit on one of the 40-foot freezer shipping containers used to transport ice cores from Antarctica to NICL

A refrigerator mechanic attends to the refrigeration unit on one of the 40-foot freezer shipping containers used to transport ice cores from Antarctica to NICL.
—Credit: Peter Rejcek, NSF

ice core tubes inside NICL's main archive freezer

Each silver tube on these shelves contains a 1-meter long section of an ice core. The white boxes contain new ice cores drilled from the West Antarctic Ice Sheet (WAIS) Divide ice core site.
—Credit: Peter Rejcek, NSF

A loader removes a pallet of ice core boxes from a freezer shipping container with ice cores from Antarctica

A loader removes a pallet of ice core boxes from a freezer shipping container with ice cores from Antarctica.
—Credit: Peter Rejcek, NSF


 

Examination & Core Processing

In addition to the main archive freezer, NICL also has an exam room held at -24°C that scientists use when examining the ice cores. The exam room is 12,000 cubic feet in size and is contiguous with the main archive area. In addition, there is also a Class-100 HEPA-filtered, cold clean room held at -24°C that scientists can use.

Scientists often use the exam room to cut samples from the ice cores, and then ship the samples back to their university or laboratory for analysis. Very few analyses on the ice cores are actually carried-out at the NICL facility. Almost all of the measurements that are made on the ice cores are conducted back at the scientist's university or laboratory.

A frequent activity that is held at NICL is what is called a core processing line, or CPL, for short. When a new ice core arrives at NICL, researchers from around the country, including young scientists working on their doctorates, gather at NICL for the CPL. During the CPL, the scientists—along with NICL staff—measure, catalog, cut and ship pieces of the ice core to their respective universities and laboratories for analysis. Depending on the complexity of the cut plan, cores can typically be run through a CPL at a rate of 30-35 meters per day. At this rate, a 1000-meter long ice core takes six to eight weeks to process.

The floor plan of the exam room will be specifically tailored to the number of scientists and the type of science or sampling which will be done during a particular CPL. As many as 10 different preparation, cutting, or analysis stations may be set up to accommodate the core with additional processing being performed off the main line if required.

A  ber measures a section of the WAIS Divide ice core as it begins its journey down a CPL

A NICL staff member measures a section of the WAIS Divide ice core as it begins its journey down a CPL. Scientists and technicians will cut the ice so it can be sent to labs around the country for analysis.
[See article - Getting to the Bottom: NICL team processes deepest ice from WAIS Divide project]
—Credit: Peter Rejcek, NSF

A researcher monitors an instrument that measures electrical conductivity in the ice

A researcher monitors an instrument that measures electrical conductivity in the ice, a key piece of information for defining and dating the layers of the ice core.
—Credit: Peter Rejcek, NSF

A researcher operates a planer during a CPL to shave the ice core smooth for electrical conductivity measurements

A researcher operates a planer during a CPL to shave the ice core smooth for electrical conductivity measurements.
—Credit: National Ice Core Laboratory

Researchers cut samples of ice cores that will be sent to labs around the country for chemical analyses

Researchers cut samples of ice cores that will be sent to labs around the country for chemical analyses.
—Credit: Peter Rejcek, NSF

A scientist looks at a thin section of an ice core, analyzing the pattern of individual ice crystals

A scientist looks at a thin section of an ice core, analyzing the pattern of individual ice crystals.
—Credit: Peter Rejcek, NSF

A scientist saws a section of an ice core destined for gas measurements, such as carbon dioxide and methane

A scientist saws a section of an ice core that will be analyzed for its ancient trapped gases, such as carbon dioxide and methane.
—Credit: Peter Rejcek, NSF

Typical CPL cut plan for a large multi-investigator ice coring project such as the WAIS Divide Ice Core Project

Typical CPL cut plan for a large multi-investigator ice coring project such as the WAIS Divide Ice Core project.
—Credit: NICL-Science Management Office

Map showing the locations of the universities and laboratories that received samples from the WAIS Divide Ice Core CPLs

Map showing the locations of the universities and laboratories that received samples from the WAIS Divide Ice Core CPLs. The WAIS Divide ice core is 3,405 meters long—the longest U.S. ice core to date—and extends back in time ~68,000 years. —Credit: Joseph Souney, Univ. New Hampshire


 

Contacts

National Ice Core Laboratory (NICL)

Technical Director
Lindsay Powers, PhD
Program Coordinator, National Geological and Geophysical Data Preservation Program and National Capabilities
U.S. Geological Survey
Box 25046, Mail Stop 975
Denver, CO 80225
Phone: (303) 202-4828
E-mail: lpowers at usgs.gov


Curator
Geoffrey Hargreaves
U.S. National Ice Core Laboratory
Phone: (303) 202-4830
E-mail: nicl at usgs.gov


Assistant Curator
Richard Nunn
U.S. National Ice Core Laboratory
Phone: (303) 202-4830
E-mail: nicl at usgs.gov

NICL – Science Management Office

Science Director
Mark Twickler
* Interested in samples? Click Here *
Institute for the Study of Earth, Oceans and Space
Universty of New Hampshire
Morse Hall, 8 College Road
Durham, NH 03824
Phone: (603) 862-1991
Fax: (603) 862-2124
E-mail: nicl.smo at unh.edu


Assistant Science Director
Joe Souney
Phone: (603) 862-1991
E-mail: nicl.smo at unh.edu


National Science Foundation

Antarctic Research Facilities and Special Projects
Mike Jackson, PhD
National Science Foundation, Division of Polar Programs
4201 Wilson Boulevard
Arlington, VA 22230
Phone: 1-703-292-8033
Email: mejackso at nsf.gov


 

Location & Address

NICL is centrally located at the Denver Federal Center, just south of the intersection of Kipling and 6th Avenues in Lakewood, Colorado. The lab's proximity to major transportation corridors and to the Denver International Airport ensures timely shipping and handling of ice cores arriving and departing the facility.

Shipping and FedEx Address
National Ice Core Laboratory
U.S. Geological Survey
One Denver Federal Center
Building 810, Entrance E-11, MS 975
Denver, CO 80225-0046

image of forklift

Mailing Address
National Ice Core Laboratory
MS-975, USGS
Box 25046, DFC
Denver, CO 80225-0046

image of envelope

 

Lab Tours & Media Policy

NICL supports a variety of outreach activities. The lab is a popular destination for field trips from schools, universities, visiting federal agencies, teachers, museum groups, and interested individuals. As such the NICL tour schedule generally needs to be booked several months in advance. Tours of the NICL facility are provided upon request, dependent on availability.

Our normal hours of operation are 8:00 am to 5:00 pm, Monday through Friday. We observe all Federal holidays.


National Ice Core Lab Tour and Media Policy

July 12, 2013

The National Ice Core Lab (NICL), located in Building 810 of the Denver Federal Center, gives facility tours to a multitude of people each year. The NICL hosts many film, TV, radio and print media representatives as well. Outreach is an important component of NICL's mission. We're pleased to have the opportunity to showcase the incredible work done with ice cores at the NICL, as well as to educate visitors about global climate change, and the role that ice cores play in understanding Earth's climate history.

However, the NICL is a working lab - hundreds of national and international scientists come to the NICL to work on ice cores archived at our facility. We also actively participate in the collection of new ice cores from field sites in Antarctica and Greenland. These activities limit the time and personnel available for tours. If you are thinking about paying us a visit at NICL, please observe the following:

  1. All tours and media visits (e.g. film crews) must be scheduled several months in advance by calling (303) 202-4830 or sending an email to nicl at usgs.gov.
  2. Plan to be flexible with your time. We may need to suggest alternate days or times for your visit if we can't accommodate your first choice. There are some time periods during which we cannot conduct tours due to the priorities of other Lab activities, or for safety reasons.
  3. NICL staff cannot accommodate "Drop-ins", or spur-of-the-moment tours. Please plan ahead.


 

Publications

The following list of peer reviewed publications are from projects that received samples or laboratory support from NICL.

2017

  1. Jones TR, Cuffey KM, White JWC, Steig, EJ, Buizert C, Markle BR, McConnell JR, Sigl M (2017) Water Isotope Diffusion in the WAIS Divide Ice Core During the Holocene and Last Glacial, Journal of Geophysical Research: Earth Surface, in press (doi:10.1002/2016JF003938)

2016

  1. Aarons SM, Aciego SM, Gabrielli P, Delmonte B, Koornneef JM, Uglietti C, Wegner A, Blakowski MA, Bouman C (2016) Ice core record of dust sources in the western United States over the last 300 years, Chemical Geology, 442, 160-173 (doi:http://dx.doi.org/10.1016/j.chemgeo.2016.09.006)
  2. Aizen EM, Aizen VB, Takeuchi N, Mayewski PA, Grigholm B, Joswiak DR, Nikitin SA, Fujita K, Nakawo M, Zapf A, Schwikowski M (2016) Abrupt and moderate climate changes in the mid-latitudes of Asia during the Holocene, Journal of Glaciology, 62(233), 411-439 (doi:10.1017/jog.2016.34)
  3. Castello JD and Rogers SO (2016) A Synopsis of the Past, an Evaluation of the Current, and a Glance toward the Future. Life in Ancient Ice, p.289
  4. Fegyveresi JM, Alley RB, Fitzpatrick JJ, Cuffey KM, McConnell JR, Voigt DE, Spencer MK, Stevens NT (2016) Five millennia of surface temperatures and ice-core bubble characteristics from the WAIS Divide deep core, West Antarctica, Paleoceanography, (doi: 10.1002/2015PA002851)
  5. Fudge TJ, Markle BR, Cuffey K, Buizert C, Taylor K, Steig EJ, Waddington E, Conway H, Koutnik M (2016) Variable relationship between accumulation and temperature in West Antarctica for the past 31,000 years, Geophysical Research Letters, 43(8), 3795-3803 (doi:10.1002/2016GL068356)
  6. Fudge TJ, Taylor KC, Waddington EW, Fitzpatrick JJ, Conway H (2016) Electrical stratigraphy of the WAIS Divide ice core: Identification of centimeter-scale irregular layering, Journal of Geophysical Research: Earth Surface, 121, 1218-1229 (doi: 10.1002/2016JF003845)
  7. Klein ES, Nolan M, McConnell J, Sigl M, Cherry J, Young J, Welker JM (2016) McCall Glacier record of Arctic climate change: Interpreting a northern Alaska ice core with regional water isotopes. Quaternary Science Reviews, 131, 274-284 (doi:10.1016/j.quascirev.2015.07.030)
  8. Koutnik M, Fudge TJ, Conway H, Waddington Ed, Neumann T, Cuffey K, Buizert C, Taylor K (2016) Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice-core site, Journal of Geophysical Research: Earth Surface, 121 (doi:10.1002/2015JF003668)
  9. Sambrotto R, Burckle L (2016) The Nature and Likely Sources of Biogenic Particles Found in Ancient Ice from Antarctica, Life In Ancient Ice, 94
  10. Santibanez PA, McConnell JR, Priscu JC (2016) A flow cytometric method to measure prokaryotic records in ice cores: an example from the West Antarctic Ice Sheet Divide drilling site, Journal of Glaciology, 62(234), 655-673 (doi:10.1017/jog.2016.50)
  11. Schaefer JM, Finkel RC, Balco G, Alley RB, Caffee MW, Briner JP, Young NE, Gow AJ, Schwartz R (2016) Greenland was nearly ice-free for extended periods during the Pleistocene, Nature, 540, 252-255 (10.1038/nature20146)
  12. Sigl M, Ferris D, Fudge TJ, Winstrup M, Cole-Dai J, McConnell JR, Taylor KC, Welten KC, Woodruff TE, Adolphi F, Brook EJ, Bisiaux M, Buizert C, Caffee MW, Dunbar N, Edwards R, Geng L, Iverson N, Koffman B, Layman L, Maselli OJ, McGwire K, Muscheler R, Nishiizumi K, Pasteris DR, Rhodes RH, Sowers TA (2016) The WAIS Divide deep ice core WD2014 chronology - Part 2: Annual-layer counting (0-31 ka BP), Climate of the Past, 12, 769-786 (doi: 10.5194/cp-12-769-2016)
  13. Taylor K (2016), Introduction to special section on the WAIS Divide Special Issue of Paleoceanography, Paleoceanography, 31, 1474–1478 (doi:10.1002/2016PA002995)
  14. Yau AM, Bender ML, Robinson A, Brook EJ (2016) Reconstructing the last interglacial at Summit, Greenland: Insights from GISP2, Proceedings of the National Academy of Sciences, 113(35), 9710–9715 (doi:10.1073/pnas.1524766113)

2015

  1. Bauska TK, Joos F, Mix AC, Roth R, Ahn J, Brook EJ (2015) Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium. Nature Geoscience, 8, 383-387 (doi:10.1038/ngeo2422)
  2. Buizert C, Cuffey KM, Severinghaus JP, Baggenstos D, Fudge TJ, Steig EJ, Markle BR, Winstrup M, Rhodes RH, Brook EJ, Sowers TA, Clow GD, Cheng H, Edwards RL, Sigl M, McConnell JR and Taylor KC (2015) The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68-31 ka BP) and the gas age-ice age difference. Climate of the Past, 11, 153-173 (doi: 10.5194/cp-11-153-2015)
  3. Geng L, Zatko MC, Alexander B, Fudge TJ, Schauer AJ, Murray LT and Mickley LJ (2015) Effects of postdepositional processing on nitrogen isotopes of nitrate in the Greenland Ice Sheet Project 2 ice core. Geophysical Research Letters, 42(13), 5346–5354 (doi: 10.1002/2015GL064218)
  4. Grimm RE, Stillman DE and MacGregor JA (2015) Dielectric signatures and evolution of glacier ice, Journal of Glaciology, 61(230), 1159-1170 (doi:10.3189/2015JoG15J113)
  5. Kobashi T, Ikeda-Fukazawa T, Suwa M, Schwander J, Kameda T, Lundin J, Hori A, Doring M and Leuenberger M (2015) Post bubble-closeoff fractionation of gases in polar firn and ice cores: effects of accumulation rate on permeation through overloading pressure. Atmos. Chem. Phys. Discuss., 15, 15711–15753 (doi:10.5194/acpd-15-15711-2015)
  6. Mekhaldi F, Muscheler R, Adolphi F, Aldahan A, Beer J, McConnell JR, Possnert G, Sigl M, Svensson A, Synal H-A, Welten KC, Woodruff TE (2015) Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications, 6:8611 (doi: 10.1038/ncomms9611)
  7. Mitchell LE, Buizert C, Brook EJ, Breton DJ, Fegyveresi J, Baggenstos D, Orsi A, Severinghaus J, Alley RB, Albert M, Rhodes RH, McConnell JR, Sigl M, Maselli O, Gregory S, Ahn J (2015) Observing and modeling the influence of layering on bubble trapping in polar firn. Journal of Geophysical Research, 120(6), 2558-2574 (doi:10.1002/2014JD022766)
  8. Orsi AJ, Kawamura K, Fegyveresi JM, Headly MA, Alley RB, Severinghaus JP (2015) Differentiating bubble-free layers from melt layers in ice cores using noble gases. Journal of Glaciology, 61(227), 585-594 (doi:10.3189/2015JoG14J237)
  9. Rhodes RH, Brook EJ, Chiang JCH, Blunier T, Maselli OJ, McConnell JR, Romanini D, Severinghaus JP (2015) Enhanced tropical methane production in response to iceberg discharge in the North Atlantic. Science, 348(6238), 1016-1019 (doi:10.1126/science.1262005)
  10. Sigl M, Winstrup M, McConnell JR, Welten KC, Plunkett G, Ludlow F, Büntgen U, Caffee M, Chellman N, Dahl-Jensen D, Fischer H, Kipfstuhl S, Kostick C, Maselli OJ, Mekhaldi F, Mulvaney R, Muscheler R, Pasteris DR, Pilcher JR, Salzer M, Schüpbach S, Steffensen JP, Vinther BM, Woodruff TE (2015) Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, advanced online publication (doi:10.1038/nature14565)
  11. Sneed SB, Mayewski PA, Sayre WG, Handley MJ, Kurbatov AV, Taylor KC, Bohleber P, Wagenbach D, Erhardt T and Spaulding NE (2015) New LA-ICP-MS cryocell and calibration technique for sub-millimeter analysis of ice cores. Journal of Glaciology, 61(226), 233-242 (doi:10.3189/2015JoG14J139)
  12. WAIS Divide Project Members (2015) Precise interpolar phasing of abrupt climate change during the last ice age. Nature, 520, 661-665 (doi:10.1038/nature14401)

2014

  1. Ahn J and Brook EJ (2014) Siple Dome ice reveals two modes of millennial CO2 change during the last ice age. Nature Communications, 5:3723, 1-6 (doi:10.1038/ncomms4723)
  2. Ahn J, Brook EJ and Buizert C (2014) Response of atmospheric CO2 to the abrupt cooling event 8200 years ago. Geophysical Research Letters, 41(2), 604-609 (doi:10.1002/2013GL058177)
  3. Bauska TK, Joos F, Mix AC, Roth R, Ahn J and EJ Brook(2014) Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium. Nature Geoscience, 8, 383–387 (doi:10.1038/ngeo2422)
  4. Buizert C, Cuffey KM, Severinghaus JP, Baggenstos D, Fudge TJ, Steig EJ, Markle BR, Winstrup M, Rhodes RH, Brook EJ, Sowers TA, Clow GD, Cheng H, Edwards RL, Sigl M, McConnell JR, Taylor KC (2014) The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference. Climate of the Past, 11, 153-173 (doi:10.5194/cp-11-153-2015)
  5. Chan WS, Mah ML, Voigt DE, Fitzpatrick JJ and Talghader JJ (2014) Crystal orientation measurements using transmission and backscattering. Journal of Glaciology, 60(224), 1135-1139 (doi:10.3189/2014JoG14J071)
  6. Coplen TB, Qi H, Tarbox L, Lorenz J and Buck B (2014) USGS46 Greenland Ice Core Water - A New Isotopic Reference Material for δ2H and δ18O Measurements of Water. Geostandards and Geoanalytical Research, 38(2), 153–157 (doi:10.1111/j.1751-908X.2013.00267.x)
  7. Fitzpatrick JJ, Voigt DE, Fegyveresi JM, Stevens NT, Spencer MK, Cole-Dai J, Alley RB, Jardine GE, Cravens ED, Wilen LA, Fudge TJ, McConnell JR (2014) Physical properties of the WAIS Divide ice core. Journal of Glaciology, 60(224), 1181-1198 (doi:http://dx.doi.org/10.3189/2014JoG14J100)
  8. Koffman BG, Handley MJ, Osterberg EC, Wells ML, Kreutz KJ (2014) Dependence of ice-core relative trace-element concentration on acidification. Journal of Glaciology, 60(219), 103-112 (doi:10.3189/2014JoG13J137)
  9. Koffman BG, Kreutz KJ, Breton DJ, Kane EJ, Winski DA, Birkel SD, Kurbatov AV, Handley MJ (2014) Centennial-scale variability of the Southern Hemisphere westerly wind belt in the eastern Pacific over the past two millennia. Climate of the Past, 10, 1125-1144 (doi:10.5194/cp-10-1125-2014)
  10. Korotkikh EV, Mayewski PA, Dixon D, Kurbatov AV, Handley MJ (2014) Recent increase in Ba concentrations as recorded in a South Pole ice core. Atmospheric Environment, 89, 683–687 (doi:10.1016/j.atmosenv.2014.03.009)
  11. Jones TR, White JWC, Popp T (2014) Siple Dome shallow ice cores: a study in coastal dome microclimatology. Climate of the Past, 10, 1253-1267 (doi:10.5194/cp-10-1253-2014)
  12. Marcott SA, Bauska TK, Buizert C, Steig EJ, Rosen JL, Cuffey KM, Fudge TJ, Severinghaus JP, Ahn J, Kalk ML, McConnell JR, Sowers T, Taylor KC, White JWC and Brook EJ (2014) Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature, 514, 616–619 (doi:10.1038/nature13799)
  13. Mayewski PA, Sneed SB, Birkel SD, Kurbatov AV and Maasch KA (2014) Holocene warming marked by abrupt onset of longer summers and reduced storm frequency around Greenland. Journal of Quaternary Science, 29(1), 99-104 (doi:10.1002/jqs.2684)
  14. McConnell JR, Maselli OJ, Sigl M, Vallelonga P, Neumann T, Anschutz H, Bales RC, Curran MAJ, Das SB, Edwards R, Kipfstuhl S, Layman L, Thomas ER (2014) Antarctic-wide array of high-resolution ice core records reveals pervasive lead pollution began in 1889 and persists today. Scientific Reports, 4, 5848 (doi:10.1038/srep05848)
  15. Medley B, Joughin I, Smith BE, Das SB (2014) Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. The Cryosphere, 8, 1375-1392 (doi:10.5194/tc-8-1375-2014)
  16. Orsi AJ, Cornuelle BD, Severinghaus JP (2014) Magnitude and temporal evolution of Dansgaard–Oeschger event 8 abrupt temperature change inferred from nitrogen and argon isotopes in GISP2 ice using a new least-squares inversion. Earth and Planetary Science Letters, 395, 81–90 (doi:10.1016/j.epsl.2014.03.030)
  17. Pasteris DR, McConnell JR, Das SB, Criscitiello AS, Evans MJ, Maselli OJ, Sigl M and Layman L, (2014) Seasonally resolved ice core records from West Antarctica indicate a sea ice source of sea-salt aerosol and a biomass burning source of ammonium. Journal of Geophysical Research, 119(14), 9168–9182 (doi:10.1002/2013JD020720)
  18. Pasteris D, McConnell JR, Edwards R, Isaksson E and Albert MR (2014) Acidity decline in Antarctic ice cores during the Little Ice Age linked to changes in atmospheric nitrate and sea salt concentrations. J. Geophys. Res. Atmos., 119, 5640–5652 (doi:10.1002/2013JD020377)
  19. Pettit EC, Whorton EN, Waddington ED and Sletten RS (2014) Influence of debris-rich basal ice on flow of a polar glacier. Journal of Glaciology, 60(223), 989-1006 (doi:10.3189/2014JoG13J161)
  20. Schoenemann SW, Steig EJ, Ding Q, Markle BR, Schauer AJ (2014) Triple water-isotopologue record from WAIS Divide, Antarctica: controls on glacial-interglacial changes in 17Oexcess of precipitation. Journal of Geophysical Research Atmospheres, 119(14), 8741-8763 (doi:10.1002/2014JD021770)
  21. Sigl M, McConnell JR, Toohey M, Curran M, Das SB, Edwards R, Isaksson E, Kawamura K, Kipfstuhl S, Kruger K, Layman L, Maselli O, Motizuki Y, Motoyama H, Pasteris DR, Severi M (2014) Insights from Antarctica on volcanic forcing during the Common Era. Nature Climate Change, 1–5 (doi:10.1038/nclimate2293)
  22. Sofen ED, Alexander B, Steig EJ, Thiemens MH, Kunasek SA, Amos HM, Schauer AJ, Hastings MG, Bautista J, Jackson TL, Vogel LE, McConnell JR, Pasteris DR, Saltzman ES (2014) WAIS Divide ice core suggests sustained changes in the atmospheric formation pathways of sulfate and nitrate since the 19th century in the extratropical Southern Hemisphere. Atmospheric Chemistry and Physics, 14, 5749-5769 (doi:10.5194/acp-14-5749-2014)
  23. Souney JM, Twickler MS, Hargreaves GM, Bencivengo BM, Kippenhan MJ, Johnson JA, Cravens ED, Neff PD, Nunn RM, Orsi AJ, Popp TJ, Rhoades JF, Vaughn BH, Voigt DE, Wong GJ, Taylor KC (2014) Core handling and processing for the WAIS Divide ice-core project. Annals of Glaciology, 55(68), 15-26 (doi:10.3189/2014AoG68A008)

2013

  1. Aartsen MG, Abbasi R, Abdou Y, Ackermann M, Adams J, Aguilar JA, Ahlers M, Altmann D, Auffenberg J, Bai X and Baker M (2013) South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy, Journal of Glaciology, 59(218), 1117-1128 (doi:10.3189/2013JoG13J068)
  2. Cole-Dai J, Ferris DG, Lanciki AL, Savarino J, Thiemens MH, McConnell JR (2013) Two likely stratospheric volcanic eruptions in the 1450s C.E. found in a bipolar, subannually dated 800 year ice core record. Journal of Geophysical Research Atmospheres, 118, 7459–7466 (doi:10.1002/jgrd.50587)
  3. Ehrenberg R (2013) Life under ice: Lake Vostok may harbor ingredients for a complex subglacial ecosystem. Science News, 184: 26–29 (doi: 10.1002/scin.5591840517)
  4. Koffman BG, Kreutz KJ, Kurbatov AV, Dunbar NW (2013) Impact of known local and tropical volcanic eruptions of the past millennium on the WAIS Divide microparticle record. Geophysical Research Letters, 40(17), 4712–4716 (doi:10.1002/grl.50822)
  5. Marsh JJS, Boschi VL, Sleighter Rl (2013) Characterization of dissolved organic matter from a Greenland ice core by nanospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Journal of Glaciology, 59(214), 225-232 (doi:2013 doi:10.3189/)
  6. Mayewski PA, Maasch KA, Dixon D, Sneed SB, Oglesby R, Korotkikh E, Potocki M, Grigholm B, Kreutz K, Kurbatov AV, Spaulding N, Stager JC, Taylor KC, Steig EJ, White J, Bertler NAN, Goodwin I, Simoes JC, Jana R, Kraus S and Fastook J (2013) West Antarctica's sensitivity to natural and human‐forced climate change over the Holocene. Journal of Quaternary Science, 28(1), 40-48 (doi:10.1002/jqs.2593)
  7. Mitchell L, Brook E, Lee JE, Buizert C, Sowers T (2013) Constraints on the Late Holocene Anthropogenic Contribution to the Atmospheric Methane Budget. Science, 342(6161), 964–966 (doi:10.1126/science.1238920)
  8. Petaev MI, Huang S, Jacobsen SB, and Zindler A (2013) Large Pt anomaly in the Greenland ice core points to a cataclysm at the onset of Younger Dryas. PNAS, 110 (32), 12917-12920 (doi:10.1073/pnas.1303924110)
  9. Rogers SO, Shtarkman YM, Kocer ZA, Edgar R, Veerapaneni R and D'Elia T (2013) Ecology of Subglacial Lake Vostok (Antarctica), Based on Metagenomic/Metatranscriptomic Analyses of Accretion Ice. Biology, 2(2), 629-650 (doi:10.3390/biology2020629)
  10. Shtarkman YM, Kocer ZA, Edgar R, Veerapaneni RS, D'Elia T, Morris PF and Rogers SO (2013) Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya. PLoS ONE, 8(7): e67221 (doi: 10.1371/journal.pone.0067221)
  11. Sigl M, McConnell JR, Layman L, Maselli O, McGwire K, Pasteris D, Dahl-Jensen D, Steffensen JP, Vinther B, Edwards R, Mulvaney R, Kipfstuhl S (2013) A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. Journal of Geophysical Research, 118, 1151–1169 (doi:10.1029/2012JD018603)
  12. Stillman DE, MacGregor JA and Grimm RE (2013) The role of acids in electrical conduction through ice. Journal of Geophysical Research: Earth Surface, 118 (1), 1–16 (doi:10.1029/2012JF002603)
  13. Verhulst KR, Aydin M and Saltzman ES (2013) Methyl chloride variability in the Taylor Dome ice core during the Holocene. Journal of Geophysical Research, 118(21), 12218-12228 (doi:10.1002/2013JD020197)
  14. WAIS Divide Project Members (2013) Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature, 500, 440–444 (doi:10.1038/nature12376)
  15. Woodruff TE, Welten KC, Caffee MW and Kunihiko Nishiizumi K (2013) Interlaboratory comparison of 10Be concentrations in two ice cores from Central West Antarctica. Nuclear Inst. and Methods in Physics Research, B, 294, 77-80 (doi:10.1016/j.nimb.2012.08.033)

2012

  1. Ahn J, Brook EJ, Mitchell L, Rosen J, McConnell JR, Taylor K, Etheridge D and Rubino M (2012) Atmospheric CO2 over the last 1000 years: A high‐resolution record from the West Antarctic Ice Sheet (WAIS) Divide ice core. Global Biogeochem. Cycles, 26, GB2027 (doi:10.1029/2011GB004247)
  2. Ahn J, Brook EJ, Schmittner A and Kreutz K (2012) Abrupt change in atmospheric CO2 during the last ice age. Geophysical Research Letters, 39(18) (doi:10.1029/2012GL053018)
  3. Barletta RE, Priscu JC, Mader HM, Jones WL and Roe CH (2012) Chemical analysis of ice vein microenvironments: II. Analysis of glacial samples from Greenland and Antarctica. Journal of Glaciology, 58(212), 1109-1118 (doi:012 doi: 10.3189/2)
  4. Bisiaux MM, Edwards R, McConnell JR, Albert MR, Anschutz H, Neumann TA, Isaksson E, and Penner JE (2012) Variability of black carbon deposition to the East Antarctic Plateau, 1800–2000 AD. Atmos. Chem. Phys., 12, 3799-3808 (doi:10.5194/acp-12-3799-2012)
  5. Bisiaux MM, Edwards R, McConnell JR, Curran MAJ, Van Ommen TD, Smith AM, Neumann TA, Pasteris DR, Penner JE, Taylor K (2012) Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850-2000 AD. Atmospheric Chemistry and Physics, 12, 4107–4115 (doi:10.5194/acp-12-4107-2012)
  6. Neff PD, Steig EJ, Clark DH, McConnell JR, Pettit EC, Menounos B (2012) Ice-core net snow accumulation and seasonal snow chemistry at a temperate-glacier site: Mount Waddington, southwest British Columbia, Canada. Journal of Glaciology, 58(212), 1165-1175 (doi:10.3189/2012JoG12J078)
  7. Price PB and Bay RC (2012) Marine bacteria in deep Arctic and Antarctic ice cores: a proxy for evolution in oceans over 300 million generations. Biogeosciences, 9, 3799-3815 (doi:10.5194/bg-9-3799-2012)
  8. Rhodes RH, Bertler NAN, Baker JA (2012) Little Ice Age climate and oceanic conditions of the Ross Sea, Antarctica from a coastal ice core record. Climate of the Past, 8, 1223-1238 (doi:10.5194/cp-8-1223-2012)

2011

  1. Fegyveresi JM, Alley RB, Spencer MK, Fitzpatrick JJ, Steig EJ, White JWC, McConnell JR, Taylor KC, 2011, Late-Holocene climate evolution at the WAIS Divide site, West Antarctica: bubble number-density estimates. Journal of Glaciology, 57(204), 629–638 (doi:10.3189/002214311797409677)
  2. Melton JR, Whiticar MJ, Eby P (2011) Stable carbon isotope ratio analyses on trace methane from ice samples. Chemical Geology, 288, 88–96 (doi:10.1016/j.chemgeo.2011.03.003)
  3. Mitchell (2011) Multidecadal variability of atmospheric methane, 1000–1800 C.E. Journal of Geophysical Research: Biogeosciences, 116(G2) (doi:10.1029/2010JG001441)
  4. Naftz DL, Schuster PF, Johnson CA (2011) A 50-year record of NOx and SO2 sources in precipitation in the Northern Rocky Mountains, USA. Geochemical Transactions, 12:4 (doi:10.1186/1467-4866-12-4)
  5. Obbard RW, Cassano T, Aho K, Troderman G and Baker I (2011) Using borehole logging and electron backscatter diffraction to orient an ice core from Upper Fremont Glacier, Wyoming, USA. Journal of Glaciology, 57(205), 832-840 (doi:10.3189/002214311798043762)
  6. Obbard RW, Sieg KE, Baker I, Meese D and Catania GA (2011) Microstructural evolution in the fine-grained region of the Siple Dome (Antarctica) ice core. Journal of Glaciology, 57(206), 1046-1056 (doi:10.3189/002214311798843322)
  7. Yang WW and Ponce A (2011) Validation of a Clostridium endospore viability assay and analysis of Greenland ices and Atacama desert soils. Applied and Environmental Microbiology, 77(7), 2352–2358 (doi:10.1128/AEM.01966-10)

2010

  1. Kobashi T, Severinghaus JP, Barnola J-M, Kawamura K, Carter T and Nakaegawa T (2010) Persistent multi-decadal Greenland temperature fluctuation through the last millennium. Climatic Change, 100(3), 733-756 (doi:10.1007/s10584-009-9689-9)
  2. Kunasek SA, Alexander B, Steig EJ, Sofen ED, Jackson TL, Thiemens MH, McConnell JR, Gleason DJ, Amos HM (2010) Sulfate sources and oxidation chemistry over the past 230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core. Journal of Geophysical Research, 115(D18313) (doi:10.1029/2010JD013846)
  3. Price PB (2010) Microbial life in martian ice: A biotic origin of methane on Mars? Planetary and Space Science, 58(10), 1199-1206 (doi:10.1016/j.pss.2010.04.013)
  4. Sowers T (2010) Atmospheric methane isotope records covering the Holocene period. Quaternary Science Reviews, 29, 213-221 (doi:10.1016/j.quascirev.2009.05.023)
  5. Wadham JL, Tranter N, Skidmore M, Hodson AJ, Priscu J, Lyons WB, Sharp M, Wynn P and Jackson M (2010), Biogeochemical weathering under ice: Size matters. Global Biogeochem. Cycles, 24, GB3025 (doi:10.1029/2009GB003688)
  6. Wang Z, Chappellaz J, Park K, and Mak JE (2010) Large Variations in Southern Hemisphere Biomass Burning During the Last 650 Years. Science, 330 (6011), 1663-1666 (doi:10.1126/science.1197257)
  7. Wang Z and Mak JE (2010) A new CF-IRMS system for quantifying stable isotopes of carbon monoxide from ice cores and small air samples. Atmos. Meas. Tech., 3, 1307-1317 (doi:10.5194/amt-3-1307-2010)

2009

  1. Ahn J, Brook EJ and Howell K (2009) A high-precision method for measurement of paleoatmospheric CO2 in small polar ice samples. Journal of Glaciology, 55(191), 499-506 (doi:10.3189/002214309788816731)
  2. D'Elia T, Veerapaneni R, Theraisnathan V and Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia, 101(6), 751–763 (doi: 10.3852/08-184)
  3. Grachev AM, Brook EJ, Severinghaus JP and Pisias NG (2009) Relative timing and variability of atmospheric methane and GISP2 oxygen isotopes between 68 and 86 ka. Global Biogeochemical Cycles, 23, GB2009 (doi:10.1029/2008GB003330)
  4. Price PB, Rohde RA and Bay RC (2009) Fluxes of microbes, organic aerosols, dust, sea-salt Na ions, non-sea-salt Ca ions, and methanesulfonate onto Greenland and Antarctic ice. Biogeosciences, 6, 479-486 (doi:10.5194/bg-6-479-2009)
  5. Severinghaus JP, Beaudette R, Headly MA, Taylor K and Brook EJ (2009) Oxygen-18 of O2 records the impact of abrupt climate change on the terrestrial biosphere. Science, 324(5933), 1431-1434 (doi:10.1126/science.1169473)

2008

  1. Ahn J and Brook EJ (2008) Atmospheric CO2 and Climate on Millennial Time Scales During the Last Glacial Period, Science, 322 (5898), 83-85 (doi:10.1126/science.1160832)
  2. Ahn J, Headly M, Wahlen M, Brook EJ, Mayewski PA and Taylor KC (2008) CO2 diffusion in polar ice: observations from naturally formed CO2 spikes in the Siple Dome (Antarctica) ice core, Journal of Glaciology, 54(187), 685-695 (doi:10.3189/002214308786570764)
  3. Aydin M, Williams MB, Tatum C, Saltzman ES (2008) Carbonyl sulfide in air extracted from a South Pole ice core: a 2000 year record, Atmos. Chem. Phys., 8, 7533–7542
  4. Banta JR, McConnell JR, Edwards R, Engelbrecht JP (2008) Delineation of carbonate dust, aluminous dust, and sea salt deposition in a Greenland glaciochemical array using positive matrix factorization, Geochem. Geophys. Geosyst., 9, Q07013 (doi:10.1029/2007GC001908)
  5. Banta JR, McConnell JR, Frey MF, Bales RC, Taylor K (2008) Spatial and temporal variability in snow accumulation at the West Antarctic Ice Sheet Divide over recent centuries, Journal of Geophysical Research, 113(D23102) (doi:10.1029/2008JD010235)
  6. Baroni M, Savarino J, Cole-Dai J, Rai VK, Thiemens MH (2008) Anomalous sulfur isotope compositions of volcanic sulfate over the last millennium in Antarctic ice cores, Journal of Geophysical Research Atmospheres, 113, D20112 (doi:10.1029/2008JD010185)
  7. D'Elia T, Veerapaneni R, Rogers SO (2008) Isolation of Microbes from Lake Vostok Accretion Ice, Applied and Environmental Microbiology, 74(15), 4962–4965 (doi:10.1128/AEM.02501-07)
  8. Das SB and Alley RB (2008) Rise in frequency of surface melting at Siple Dome through the Holocene: Evidence for increasing marine influence on the climate of West Antarctica, Journal of Geophysical Research: Atmospheres, 113(D2), (doi:10.1029/2007JD008790)
  9. Kobashi T, Severinghaus JP, Barnola J-M (2008), 4±1.5°C abrupt warming 11,270 yr ago identified from trapped air in Greenland ice, Earth and Planetary Science Letters, 268, 397-407 (doi:10.1016/j.epsl.2008.01.032)
  10. Kobashi T, Severinghaus JP, Kawamura K (2008) Argon and nitrogen isotopes of trapped air in the GISP2 ice core during the Holocene epoch (0–11,500 B.P.): Methodology and implications for gas loss processes, Geochimica et Cosmochimica Acta, 72(19), 4675–4686 (doi:10.1016/j.gca.2008.07.006)
  11. McConnell JR and Edwards R (2008) Coal burning leaves toxic heavy metal legacy in the Arctic. PNAS, 105 (34), 12140-12144 (doi:10.1073/pnas.0803564105)
  12. McGwire KC, Hargreaves GM, Alley RB, Popp TJ, Reusch DB, Spencer MK, Taylor KC (2008) An integrated system for optical imaging of ice cores, Cold Regions Science and Technology, 53(2), 216-228 (doi:10.1016/j.coldregions.2007.08.007)
  13. McGwire KC, McConnel JR, Alley RB, Banta JR, Hargreaves GM, Taylor KC (2008) Dating annual layers of a shallow Antarctic ice core with an optical scanner, Journal of Glaciology, 54(188)
  14. Rohde RA, Price PB, Bay RC, Bramall NE (2008) In situ microbial metabolism as a cause of gas anomalies in ice, Proceedings of the National Academy of Sciences, 105(25), 8667-8672 (doi:10.1073/pnas.0803763105)
  15. Saltzman ES, Aydin M, Tatum C, Williams MB (2008) 2,000-year record of atmospheric methyl bromide from a South Pole ice core, J. Geophys. Res., 113, D05304 (doi:10.1029/2007JD008919)
  16. Suwa M, Bender ML (2008) O2/N2 ratios of occluded air in the GISP2 ice core, J. Geophys. Res., 113, D11119 (doi:10.1029/2007JD009589)

2007

  1. Ahn J and Brook EJ (2007) Atmospheric CO2 and climate from 65 to 30 ka B.P., Geophysical Research Letters, 34(10) (doi:10.1029/2007GL029551)
  2. Banta JR and McConnell JR (2007) Annual accumulation over recent centuries at four sites in central Greenland, Journal of Geophysical Research: Atmospheres, 112(D10) (doi:10.1029/2006JD007887)
  3. Gow AJ and Meese D (2007) Physical properties, crystalline textures and c-axis fabrics of the Siple Dome (Antarctica) ice core, Journal of Glaciology, 53(183), 573-584 (doi:10.3189/002214307784409252)
  4. Gow AJ and Meese DA (2007) The distribution and timing of tephra deposition at Siple Dome, Antarctica: possible climatic and rheologic implications, Journal of Glaciology, 53(183), 585-596 (doi:10.3189/002214307784409270)
  5. Grachev AM, Brook EJ and Severinghaus JP (2007) Abrupt changes in atmospheric methane at the MIS 5b–5a transition, Geophysical Research Letters, 34(20) (doi:10.1029/2007GL029799)
  6. Headly MA and Severinghaus JP (2007) A method to measure Kr/N2 ratios in air bubbles trapped in ice cores and its application in reconstructing past mean ocean temperature, Journal of Geophysical Research: Atmospheres, 112(D19) (doi:10.1029/2006JD008317)
  7. Hinkley T (2007) Lead (Pb) in old Antarctic ice: some from dust, some from other sources, Geophysical research letters, 34(8) (doi:10.1029/2006GL028736)
  8. MacGregor JA, Winebrenner DP, Conway H, Matsuoka K, Mayewski PA and Clow GD (2007) Modeling englacial radar attenuation at Siple Dome, West Antarctica, using ice chemistry and temperature data, Journal of Geophysical Research, 112, F03008 (doi:10.1029/2006JF000717)
  9. Obbard R and Baker I (2007) The microstructure of meteoric ice from Vostok, Antarctica, Journal of Glaciology, 53(180), 41-62 (doi:10.3189/172756507781833901)
  10. Rohde RA and Price PB (2007) Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals, Proceedings of the National Academy of Sciences, 104(42), 16592-16597 (doi:10.1073/pnas.0708183104 )
  11. Williams MB, Aydin M, Tatum C and Saltzman ES (2007) A 2000 year atmospheric history of methyl chloride from a South Pole ice core: Evidence for climate‐controlled variability, Geophysical research letters, 34(7) (doi:10.1029/2006GL029142)
  12. Yung PT, Shafaat HS, Connon SA and Ponce A (2007) Quantification of viable endospores from a Greenland ice core, FEMS microbiology ecology, 59(2), 300-306 (doi:10.1111/j.1574-6941.2006.00218.x)

2006

  1. Cecil LD, Green JR and Thompson LG eds., (2006) Earth paleoenvironments: records preserved in mid-and low-latitude glaciers (Vol. 9). Springer Science & Business Media
  2. Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Tsapin AI, Studinger M and Priscu JC (2006) Limnological conditions in subglacial Lake Vostok, Antarctica, Limnology and Oceanography, 51(6), 2485-2501
  3. Frey MM, Bales RC and McConnell JR (2006) Climate sensitivity of the century-scale hydrogen peroxide (H2O2) record preserved in 23 ice cores from West Antarctica, Journal of Geophysical Research: Atmospheres, 111(D21301), (doi:10.1029/2005JD006816)
  4. Obbard R, Baker I and Sieg K (2006) Using electron backscatter diffraction patterns to examine recrystallization in polar ice sheets, Journal of Glaciology, 52(179), 546-557 (doi:10.3189/172756506781828458)
  5. Saltzman ES, Dioumaeva I and Finley BD (2006) Glacial/interglacial variations in methanesulfonate (MSA) in the Siple Dome ice core, West Antarctica, Geophysical Research Letters, 33(11), (doi:10.1029/2005GL025629)
  6. Shafaat HS and Ponce A (2006) Applications of a rapid endospore viability assay for monitoring UV inactivation and characterizing arctic ice cores, Applied and environmental microbiology, 72(10), 6808-6814 (doi:10.1128/AEM.00255-06 )
  7. Tung HC, Price PB, Bramall NE and Vrdoljak G (2006) Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice, Astrobiology, 6(1), 69-86 (doi:10.1089/ast.2006.6.69)

2005

  1. Brook EJ, White JW, Schilla AS, Bender ML, Barnett B, Severinghaus JP, Taylor KC, Alley RB and Steig EJ (2005) Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last glacial period, Quaternary Science Reviews, 24(12), 1333-1343 (doi:10.1016/j.quascirev.2005.02.002)
  2. Christner BC, Mikucki JA, Foreman CM, Denson J and Priscu JC (2005) Glacial ice cores: a model system for developing extraterrestrial decontamination protocols, Icarus, 174(2), 572-584 (doi:10.1016/j.icarus.2004.10.027)
  3. Das SB and Alley RB (2005) Characterization and formation of melt layers in polar snow: observations and experiments from West Antarctica, Journal of Glaciology, 51(173), 307-312 (doi:10.3189/172756505781829395)
  4. DiPrinzio CL, Wilen LA, Alley RB, Fitzpatrick JJ, Spencer MK and Gow AJ (2005) Fabric and texture at siple dome, antarctica, Journal of Glaciology, 51(173), 281-290 (doi:10.3189/172756505781829359)
  5. Hastings MG, Sigman DM and Steig EJ (2005) Glacial/interglacial changes in the isotopes of nitrate from the Greenland Ice Sheet Project 2 (GISP2) ice core, Global biogeochemical cycles, 19(4) (doi:10.1029/2005GB002502)
  6. Kellogg DE and Kellogg TB (2005) Frozen in time: The diatom record in ice cores from remote drilling sites on the Antarctic ice sheets (pp. 69-93). Princeton University Press: Princeton, NJ, USA
  7. Lal D, Jull AT, Pollard D and Vacher L (2005) Evidence for large century time-scale changes in solar activity in the past 32 Kyr, based on in-situ cosmogenic 14 C in ice at Summit, Greenland, Earth and Planetary Science Letters, 234(3), 335-349 (doi:10.1016/j.epsl.2005.02.011)
  8. Steig EJ, Mayewski PA, Dixon DA, Kaspari SD, Frey MM, Schneider DP, Arcone SA, Hamilton GS, Spikes V, Albert M and Meese D (2005) High-resolution ice cores from US ITASE (West Antarctica): Development and validation of chronologies and determination of precision and accuracy, Annals of Glaciology, 41(1), 77-84 (doi:)10.3189/172756405781813311
  9. Tung HC, Bramall NE and Price PB (2005) Microbial origin of excess methane in glacial ice and implications for life on Mars, Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18292-18296 (doi: 10.1073/pnas.0507601102 )

2004

  1. Ahn J, Wahlen M, Deck BL, Brook EJ, Mayewski PA, Taylor KC and White JW (2004) A record of atmospheric CO2 during the last 40,000 years from the Siple Dome, Antarctica ice core, Journal of Geophysical Research: Atmospheres, 109(D13) (doi:10.1029/2003JD004415)
  2. Alexander B, Savarino J, Kreutz KJ and Thiemens MH (2004) Impact of preindustrial biomass‐burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen, Journal of Geophysical Research: Atmospheres, 109(D8) (doi:10.1029/2003JD004218)
  3. Pruett LE, Kreutz KJ, Wadleigh M, Mayewski PA and Kurbatov A (2004) Sulfur isotopic measurements from a West Antarctic ice core: implications for sulfate source and transport, Annals of Glaciology, 39(1), 161-168 (doi:10.3189/172756404781814339)
  4. Schuster PF, Naftz DL, Cecil LD and Green JR (2004) Evidence of Abrupt Climate Change and the Development of an Historic Mercury Deposition Record Using Chronological Refinement of Ice Cores at Upper Fremont Glacier, Earth Paleoenvironments: Records Preserved in Mid-and Low-Latitude Glaciers, Springer Netherlands, 181-216 (doi:10.1007/1-4020-2146-1_10)
  5. Taylor KC, Alley RB, Meese DA, Spencer MK, Brook EJ, Dunbar NW, Finkel RC, Gow AJ, Kurbatov AV, Lamorey GW and Mayewski PA (2004) Dating the Siple Dome (Antarctica) ice core by manual and computer interpretation of annual layering, Journal of Glaciology, 50(170), 453-461 (doi:10.3189/172756504781829864)
  6. Taylor KC, White JWC, Severinghaus JP, Brook EJ, Mayewski PA, Alley RB, Steig EJ, Spencer MK, Meyerson E, Meese DA and Lamorey GW (2004) Abrupt climate change around 22ka on the Siple Coast of Antarctica, Quaternary Science Reviews, 23(1), 7-15 (doi:10.1016/j.quascirev.2003.09.004)

2003

  1. Baker I, Cullen D and Iliescu D (2003) The microstructural location of impurities in ice, Canadian Journal of Physics, 81(1-2), 1-9 (doi:10.1139/p03-030)
  2. Budner D and Cole‐Dai J (2003) The number and magnitude of large explosive volcanic eruptions between 904 and 1865 AD: Quantitative evidence from a new South Pole ice core, Volcanism and the Earth's Atmosphere, 165-176 (doi:10.1029/139GM10)
  3. Obbard R, Iliescu D, Cullen D, Chang J and Baker I (2003) You have full text access to this content SEM/EDS comparison of polar and seasonal temperate ice, Microscopy Research and Technique, 62(1), 49-61 (doi:10.1002/jemt.10381)
  4. Savarino J, Bekki S, Cole‐Dai J and Thiemens MH (2003) Evidence from sulfate mass independent oxygen isotopic compositions of dramatic changes in atmospheric oxidation following massive volcanic eruptions, Journal of Geophysical Research: Atmospheres, 108(D21) (doi:10.1029/2003JD003737)
  5. Savarino J, Romero A, Cole‐Dai J, Bekki S and Thiemens MH (2003) UV induced mass‐independent sulfur isotope fractionation in stratospheric volcanic sulfate, Geophysical Research Letters, 30(21) (doi:10.1029/2003GL018134)
  6. Severinghaus JP, Grachev A, Luz B and Caillon N (2003) A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica, Geochimica et Cosmochimica Acta, 67(3), 325-343 (doi:10.1016/S0016-7037(02)00965-1)
  7. Voigt DE, Alley RB, Anandakrishnan S and Spencer MK (2003) Ice-core insights into the flow and shut-down of Ice Stream C, West Antarctica, Annals of Glaciology, 37(1), 123-128 (doi:10.3189/172756403781815465)
  8. Wilen LA, Diprinzio CL, Alley RB and Azuma N (2003) Development, principles, and applications of automated ice fabric analyzers, Microscopy research and technique, 62(1), 2-18 (doi:10.1002/jemt.10380)

2002

  1. Baker I and Cullen D (2002) The structure and chemistry of 94 m Greenland Ice Sheet Project 2 ice, Annals of Glaciology, 35(1), 224-230 (doi:10.3189/172756402781816627)
  2. Hamilton GS (2002) Mass balance and accumulation rate across Siple Dome, West Antarctica, Annals of Glaciology, 35(1), 102-106 (doi:10.3189/172756402781816609)
  3. Hansen DP and Wilen LA (2002) Performance and applications of an automated c-axis ice-fabric analyzer, Journal of Glaciology, 48(160), 159-170 (doi:10.3189/172756502781831566)
  4. McConnell JR, Lamorey GW, Lambert SW and Taylor KC (2002) Continuous ice-core chemical analyses using inductively coupled plasma mass spectrometry, Environmental science & technology, 36(1), 7-11 (doi:10.1021/es011088z)
  5. Schuster PF, Krabbenhoft DP, Naftz DL, Cecil LD, Olson ML, Dewild JF, Susong DD, Green JR and Abbott ML (2002) Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources, Environmental science & technology, 36(11), 2303-2310 (doi:10.1021/es0157503)

2001

  1. Alley RB, Anandakrishnan S and Jung P (2001), Stochastic resonance in the North Atlantic, Paleoceanography, 16(2), 190–198 (doi:10.1029/2000PA000518)
  2. Caillon N, Severinghaus JP, Barnola JM, Chappellaz J, Jouzel J and Parrenin F (2001) Estimation of temperature change and of gas age- Ice age difference, 108 kyr B. P., at Vostok, Antarctica, Journal of Geophysical Research, 106(31), 893-901
  3. Christner BC, Mosley‐Thompson E, Thompson LG and Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice, Environmental Microbiology, 3(9), 570-577 (doi:10.1046/j.1462-2920.2001.00226.x)
  4. Cullen D and Baker I (2001) Observation of impurities in ice, Microscopy research and technique, 55(3), 198-207
  5. McCracken KG, Dreschhoff GAM, Zeller EJ, Smart DF and Shea MA (2001) Solar cosmic ray events for the period 1561–1994: 1. Identification in polar ice, 1561–1950, Journal of Geophysical Research: Space Physics, 106(A10), 21585-21598 (doi:10.1029/2000JA000237)

2000

  1. Alley RB (2000) Ice-core evidence of abrupt climate changes, Proceedings of the National Academy of Sciences, 97(4), 1331-1334 (doi:10.1073/pnas.97.4.1331)
  2. Alley RB (2000) The Younger Dryas cold interval as viewed from central Greenland, Quaternary science reviews, 19(1), 213-226 (doi:10.1016/S0277-3791(99)00062-1)
  3. Kreutz KJ, Mayewski PA, Meeker LD, Twickler MS and Whitlow SI (2000) The effect of spatial and temporal accumulation rate variability in West Antarctica on soluble ion deposition, Geophysical Research Letters, 27(16), 2517 (doi:10.1029/2000GL011499)
  4. Schuster PF, White DE, Naftz DL and Cecil LD (2000) Chronological refinement of an ice core record at Upper Fremont Glacier in south central North America, Journal of Geophysical Research: Atmospheres, 105(D4), 4657-4666 (doi:10.1029/1999JD901095)
  5. Steig EJ, Morse DL, Waddington ED, Stuiver M, Grootes PM, Mayewski PA, Twickler MS and Whitlow SI (2000) Wisconsinan and Holocene Climate History from an Ice Core at Taylor Dome, Western Ross Embayment, Antarctica, Geografiska Annaler: Series A, Physical Geography, 82, 213–235 (doi:10.1111/j.0435-3676.2000.00122.x)
  6. Wilen LA (2000) A new technique for ice-fabric analysis, Journal of Glaciology, 46(152), 129-139 (doi:10.3189/172756500781833205)

1999

  1. Alley RB, Agustsdottir AM and Fawcett PJ (1999) Ice‐core evidence of late‐Holocene reduction in North Atlantic ocean heat transport. Mechanisms of global climate change at millennial time scales, 301-312 (doi:10.1029/GM112p0301)
  2. Alley RB, Mayewski PA and Saltzman ES (1999) Increasing North Atlantic climate variability recorded in a central Greenland ice core, Polar Geography, 23(2), 119-131 (doi:10.1080/10889379909377669)
  3. Castello JD, Rogers SO, Starmer WT, Catranis CM, Ma L, Bachand GD, Zhao Y and Smith JE (1999) Detection of tomato mosaic tobamovirus RNA in ancient glacial ice, Polar Biology, 22(3), 207-212 (doi:10.1007/s003000050411)
  4. Karl DM, Bird DF, Björkman K, Houlihan T, Shackelford R and Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica, Science, 286(5447), 2144-2147 (doi:10.1126/science.286.5447.2144)
  5. Lorrain, RD, Fitzsimons SJ, Vandergoes MJ and Stievenard M (1999) Ice composition evidence for the formation of basal ice from lake water beneath a cold-based Antarctic glacier, Annals of Glaciology, 28(1), 277-281 (doi:10.3189/172756499781822011)
  6. Ma L, Catranis CM, Starmer WT and Rogers SO (1999) Revival and characterization of fungi from ancient polar ice, Mycologist, 13(2), 70-73 (doi:10.1016/S0269-915X(99)80012-3)
  7. Shea MA, Smart DF and Dreschhoff GAM (1999) Identification of major proton fluence events from nitrates in polar ice cores, Radiation measurements, 30(3), 309-316 (doi:10.1016/S1350-4487(99)00057-8)

1998

  1. Cecil LD, Green JR, Vogt S, Michel R and Cottrell G (1998) Isotopic composition of ice cores and meltwater from Upper Fremont Glacier and Galena Creek rock glacier, Wyoming, Geografiska Annaler: Series A, Physical Geography, 80(3‐4), 287-292 (doi:10.1111/j.0435-3676.1998.00044.x)
  2. Dreschhoff G and Zeller EJ (1998) Ultra-high resolution nitrate in polar ice as indicator of past solar activity. In Solar Electromagnetic Radiation Study for Solar Cycle 22 (pp. 365-374). Springer Netherlands
  3. Severinghaus JP, Sowers T, Brook EJ, Alley RB and Bender ML (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice, Nature, 391(6663), 141-146 (doi:10.1038/34346)
  4. Steig EJ, Fitzpatrick JJ, Potter Jr N and Clark DH (1998) The geochemical record in rock glaciers, Geografiska Annaler: Series A, Physical Geography, 80(3‐4), 277-286 (doi:10.1111/j.0435-3676.1998.00043.x)

1997

  1. Alley RB, Gow AJ, Meese DA, Fitzpatrick JJ, Waddington ET and Bolzan JF (1997) Grain‐scale processes, folding, and stratigraphic disturbance in the GISP2 ice core, Journal of Geophysical Research: Oceans, 102(C12), 26819-26830 (doi:10.1029/96JC03836)
  2. Alley RB, Shuman CA, Meese DA, Gow AJ, Taylor KC, Cuffey KM, Fitzpatrick JJ, Grootes PM, Zielinski GA, Ram M, Spinelli G and Elder B (1997) Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application, Journal of Geophysial Research: Oceans, 102(C12), 26367–26381 (doi:10.1029/96JC03837)
  3. Cecil LD and Vogt S (1997) Identification of bomb-produced chlorine-36 in mid-latitude glacial ice of North America, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 123(1-4), 287-289 (doi:10.1016/S0168-583X(96)00717-3)
  4. Gow AJ, Meese DA, Alley RB, Fitzpatrick JJ, Anandakrishnan S, Woods GA and Elder BC (1997) Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: A review, Journal of Geophysical Research: Oceans, 102(C12), 26559-26575 (doi:10.1029/97JC00165)
  5. Matsumoto A and Hinkley TK (1997) Determination of lead, cadmium, indium, thallium and silver in ancient ices from Antarctica by isotope dilution-thermal ionization mass spectrometry, Geochemical Journal, 31(3), 175-181 (doi:10.2343/geochemj.31.175)
  6. Meese DA, Gow AJ, Alley RB, Zielinski GA, Grootes PM, Ram M, Taylor KC, Mayewski PA and Bolzan JF (1997) The Greenland Ice Sheet Project 2 depth‐age scale: Methods and results. Journal of Geophysical Research: Oceans, 102(C12), 26411-26423 (doi:10.1029/97JC00269)

1996

  1. Alley RB and Woods GA (1996) Impurity influence on normal grain growth in the GISP2 ice core, Greenland, Journal of Glaciology, 42(141), 255-260 (doi:10.3198/1996JoG42-141-255-260)
  2. Gow AJ and Meese DA (1996) Nature of basal debris in the GISP2 and Byrd ice cores and its relevance to bed processes, Annals of Glaciology, 22(1), 134-140 (doi:10.3198/1996AoG22-1-134-140)

1995

  1. Alley RB and Anandakrishnan S (1995) Variations in melt-layer frequency in the GISP2 ice core: implications for Holocene summer temperatures in central Greenland, Annals of Glaciology, 21(1), 64-70 (doi:10.3198/1995AoG21-1-64-70)
  2. Alley RB, Finkel RC, Nishiizumi K, Anandakrishnan S, Shuman CA, Mershon G, Zielinski GA and Mayewski PA (1995) Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: model-based estimates, Journal of Glaciology, 41(139), 503-514 (doi:10.3198/1995JoG41-139-503-514)